| TangentialComplex | R Documentation |
A Tangential Delaunay complex is a simplicial complex designed
to reconstruct a k-dimensional manifold embedded in
d-dimensional Euclidean space. The input is a point sample coming
from an unknown manifold. The running time depends only linearly on the
extrinsic dimension d and exponentially on the intrinsic dimension
k.
The TangentialComplex class represents a tangential complex. After the computation of the complex, an optional post-processing called perturbation can be run to attempt to remove inconsistencies.
rgudhi::PythonClass -> TangentialComplex
new()TangentialComplex constructor.
TangentialComplex$new(points, intrinsic_dim = NULL)
pointsEither a character string specifying the path to an OFF file which the points can be read from or a numeric matrix or list of numeric vectors specifying the points directly.
intrinsic_dimAn integer value specifying the intrinsic dimension
of the manifold. This is nedded when points are provided as a numeric
matrix or a list of numeric vectors. Defaults to NULL.
A TangentialComplex object storing the tangential
complex.
compute_tangential_complex()This function computes the tangential complex.
TangentialComplex$compute_tangential_complex()
In debug mode, it may raise a ValueError if the computed star
dimension is too low. Try to set a bigger maximal edge length value via
the $set_max_squared_edge_length() method if this happens.
The updated TangentialComplex class itself
invisibly.
create_simplex_tree()Exports the complex into a simplex tree.
TangentialComplex$create_simplex_tree()
A SimplexTree object storing the computed simplex
tree.
get_point()This function returns the point corresponding to a given
vertex from the SimplexTree.
TangentialComplex$get_point(vertex)
vertexAn integer value specifying the desired vertex.
A numeric vector storing the point corresponding to the input vertex.
num_inconsistent_simplices()TangentialComplex$num_inconsistent_simplices()
An integer value storing the number of inconsistent simplicies.
num_inconsistent_stars()TangentialComplex$num_inconsistent_stars()
An integer value storing the number of stars containing at least one inconsistent simplex.
num_simplices()TangentialComplex$num_simplices()
An integer value storing the total number of simplices in stars (including duplicates that appear in several stars).
num_vertices()TangentialComplex$num_vertices()
An integer value storing the number of vertices.
set_max_squared_edge_length()Sets the maximal possible squared edge length for the edges in the triangulations.
TangentialComplex$set_max_squared_edge_length(max_squared_edge_length)
max_squared_edge_lengthA numeric value specifying the maximal possible squared edge length.
If the maximal edge length value is too low, the
$compute_tangential_complex() method will throw an exception in debug
mode.
The updated TangentialComplex class itself
invisibly.
clone()The objects of this class are cloneable with this method.
TangentialComplex$clone(deep = FALSE)
deepWhether to make a deep clone.
Clément Jamin
Other filtrations and reconstructions:
AlphaComplex,
RipsComplex,
WitnessComplex
X <- seq_circle(10)
tc <- TangentialComplex$new(points = X, intrinsic_dim = 1)
tc
X <- seq_circle(10)
tc <- TangentialComplex$new(points = X, intrinsic_dim = 1)
tc$compute_tangential_complex()
X <- seq_circle(10)
tc <- TangentialComplex$new(points = X, intrinsic_dim = 1)
st <- tc$compute_tangential_complex()$create_simplex_tree()
X <- seq_circle(10)
tc <- TangentialComplex$new(points = X, intrinsic_dim = 1)
st <- tc$compute_tangential_complex()$create_simplex_tree()
tc$get_point(1)
X <- seq_circle(10)
tc <- TangentialComplex$new(points = X, intrinsic_dim = 1)
tc$compute_tangential_complex()
tc$num_inconsistent_simplices()
X <- seq_circle(10)
tc <- TangentialComplex$new(points = X, intrinsic_dim = 1)
tc$compute_tangential_complex()
tc$num_inconsistent_stars()
X <- seq_circle(10)
tc <- TangentialComplex$new(points = X, intrinsic_dim = 1)
tc$compute_tangential_complex()
tc$num_simplices()
X <- seq_circle(10)
tc <- TangentialComplex$new(points = X, intrinsic_dim = 1)
tc$compute_tangential_complex()
tc$num_vertices()
X <- seq_circle(10)
tc <- TangentialComplex$new(points = X, intrinsic_dim = 1)
tc$set_max_squared_edge_length(1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.