R/Predict.s

Defines functions rbind.Predict perimeter print.Predict Predict

Documented in perimeter Predict print.Predict rbind.Predict

Predict <-
  function(object, ...,
           fun=NULL, funint=TRUE, type=c("predictions","model.frame","x"),
           np=200,
           conf.int=.95,
           conf.type=c('mean', 'individual', 'simultaneous'),
           usebootcoef=TRUE, boot.type=c('percentile', 'bca', 'basic'),
           posterior.summary=c('mean', 'median', 'mode'),
           adj.zero=FALSE, ref.zero=FALSE,
           kint=NULL, ycut=NULL, time=NULL,
           loglog=FALSE, digits=4, name, factors=NULL,
           offset=NULL)
{
  fit       <- object
  type      <- match.arg(type)
  conf.type <- match.arg(conf.type)
  boot.type <- match.arg(boot.type)
  posterior.summary <- match.arg(posterior.summary)
  draws     <- fit$draws
  bayes     <- length(draws) > 0
  if(bayes && conf.type == 'simultaneous')
    stop('conf.type simultaneous does not work for Bayesian models')
  
  oldopt <- options('digits')
  options(digits=digits)
  on.exit(options(oldopt))

  cl <- class(fit)
  isblrm <- 'blrm' %in% cl
  isorm  <- 'orm'  %in% cl
  islrm  <- 'lrm'  %in% cl

  Center <- 0.
  if('cph' %in% cl) Center <- fit$center

  kintgiven <- length(kint) > 0
  if(! length(kint)) {
    kint <- fit$interceptRef
    if(! length(kint)) kint <- 1
  }

  pppo <- fit$pppo
  if(! isblrm) pppo <- 0
  partialpo <- pppo > 0L
  if(isblrm) cppo <- fit$cppo
  if(partialpo && ! length(cppo))
    stop('only implemented for constrained partial PO models')
  ylevels   <- if(isblrm) fit$ylevels else fit$yunique
  if(islrm || isorm || isblrm) {
    if(kintgiven && ! length(ycut)) ycut <- ylevels[kint + 1]
    if(length(ycut) && ! kintgiven)
      kint <- if(all.is.numeric(ylevels)) which(ylevels == ycut) - 1
              else max((1 : length(ylevels))[ylevels <= ycut]) - 1
  }

  Pred <- function(type='lp') {
    if(type == 'x') {
      if(isblrm) predict(fit, settings, type='x', kint=kint, ycut=ycut,
                         zcppo=FALSE)
      else
        predictrms(fit, settings, type='x')
    }
    else {
      if(isblrm) predict(fit, settings, type='lp',
                       fun=fun, funint=funint,
                       kint=kint, ycut=ycut,
                       posterior.summary=posterior.summary, cint=conf.int)
      else predictrms(fit, settings, kint=kint, 
                      ref.zero=ref.zero,
                      type='lp', conf.int=conf.int, conf.type=conf.type)
    }
  }
  
  dotlist <- if(length(factors)) factors else rmsArgs(substitute(list(...)))
  fname   <- if(missing(name)) '' else name
  at      <- fit$Design
  assume  <- at$assume.code
  name    <- at$name	##interactions are placed at end by design

  ioff <- attr(fit$terms, 'offset')
  if(length(ioff)) {
    offsetExpression <- rownames(attr(fit$terms, 'factors'))[ioff]
    offsetVariableName <- all.vars(as.formula(paste('~', offsetExpression)))
    if(! length(offset))
      stop('model has offset term but offset=list(...) not given to Predict')
    if(length(offset) > 1) stop('offset may only contain one variable')
    if(length(offset[[1]]) != 1) stop('offset variable must contain 1 value')
    if(names(offset) != offsetVariableName)
      stop(paste('offset does not have correct variable name (',
                 offsetVariableName, ')', sep=''))
  }
    
  if('time' %in% name) {
    dotlist$time <- time
    time <- NULL
  }

  if(length(fname) > 1 || (length(dotlist) == 0 && fname == '')) {
    m <- match.call(expand.dots=FALSE)
    m[[1]] <- as.name('Predict')
    nams <- if(length(fname) > 1) fname else name[assume != 9]
    res <- vector('list', length(nams))
    names(res) <- nams
    
    i <- 0L
    info <- NULL # handles case where nams is empty, when no predictors
    ## For each predictor that "move" call Predict separately, and rbind results
    callenv <- parent.frame()
    for(nam in nams) {
      i <- i + 1L
      m$name <- nam
      lv     <- eval(m, callenv)
      j <- attr(lv, 'info')
      if(i == 1L) info <- j
      else {
        info$varying <- c(info$varying, j$varying)
        info$adjust  <- c(info$adjust,  j$adjust)
      }
      attr(lv, 'info') <- NULL
      lv$.predictor. <- nam
      res[[nam]] <- lv
    }
    lv <- do.call('rbind.data.frame', res)
    class(lv) <- c('Predict', 'data.frame')
    attr(lv, 'info') <- info
    return(lv)
  }
    
  f <- sum(assume != 9)	##limit list to main effects factors
  parms  <- at$parms
  label  <- at$label
  values <- at$values
  yunits <- fit$units
  units  <- at$units
  scale  <- fit$scale.pred
  if(! length(scale)) scale <- "X * Beta"

  if(! length(fun)) {
    ylab <- scale[1]
    if(length(time))
      ylab <- ylabPlotmath <- ylabhtml <-
        if(loglog) paste("log[-log S(", format(time), ")]", sep="")
        else paste(format(time), yunits, "Survival Probability")
    else if(scale[1] == 'X * Beta') {
      ylabPlotmath <- expression(X*hat(beta))
      ylabhtml     <- 'X&\beta;'
      }
    else ylabPlotmath <- ylabhtml <- ylab
  }
  else ylab <- ylabPlotmath <- ylabhtml <- ''
  
  if(ref.zero & length(time))
    stop("ref.zero=TRUE does not make sense with time given")
  
  if(fname == '') factors <- dotlist ## name not an argument
  else {
    factors <- list()
    for(g in fname) factors[[g]] <- NA
  }
  nf   <- length(factors)
  fnam <- names(factors)
  
  if(nf < 1) stop("must specify predictors to vary")
  
  which <- charmatch(fnam, name, 0L)
  if(any(which == 0L))
    stop(paste("predictors(s) not in model:",
               paste(names(factors)[which == 0L], collapse=" ")))
  
  if(any(assume[which] == 9L))
    stop("cannot plot interaction terms")

  lim <- Getlim(at, allow.null=TRUE, need.all=FALSE)
 
  fnam   <- names(factors)
  nf     <- length(factors)
  xadjdf <- lim$limits[2L, , drop=FALSE]
  xadj   <- unclass(xadjdf)
  varying <- NULL
  
  if(nf == 0L) return(as.data.frame(xadj))
  if(nf < f) { ## number of arguments < total number of predictors
    ## Some non-varying predictors
    settings <- xadj
    if(adj.zero) for(x in names(settings)) {
      i <- match(x, name)
      settings[[x]] <- if(assume[i] %in% c(5L, 8L)) parms[[i]][1]
      else if(length(V <- lim$values[[x]]) & is.character(V)) V[1]
      else 0L
    }
    for(n in fnam) settings[[n]] <- factors[[n]]
  }
  else settings <- factors
  
  for(i in 1L : nf) {
    n <- fnam[i]
    v <- settings[[n]]
    lv <- length(v)
    if(lv == 0L) stop('a predictor has zero length')
    if(lv == 1L && is.na(v))
      settings[[n]] <- value.chk(at, which(name == n), NA, np, lim)
    if(length(settings[[n]]) > 1L) varying <- c(varying, n)
  }
  if(prod(sapply(settings,length)) > 1e5)
    stop('it is not sensible to predict more than 100,000 combinations')
  settings <- expand.grid(settings)
  if(length(ioff)) settings[[offsetVariableName]] <- offset[[1]]
  adjust <- NULL
  for(n in name[assume != 9L & name %nin% fnam])
    adjust <- paste(adjust, n, "=", 
                    if(is.factor(xadj[[n]])) as.character(xadj[[n]])
                    else format(xadj[[n]]), " ", sep="")
  
  j <- assume != 9L
  label  <- label[j]
  units  <- units[j]
  assume <- assume[j]
  names(label) <- names(units) <- names(assume) <- name[j]
  at <- list(label=label, units=units, assume.code=assume)
  
  info <- list(varying=varying, adjust=adjust, Design=at,
               ylabPlotmath=ylabPlotmath, ylabhtml=ylabhtml,
               ylab=ylab, yunits=yunits,
               ref.zero=ref.zero, adj.zero=adj.zero, time=time,
               conf.int=conf.int)
  if(type == 'model.frame') {
    attr(settings, 'info') <- info
    return(settings)
  }
  ## Number of non-slopes
  nrp     <- num.intercepts(fit)
  nrpcoef <- num.intercepts(fit, 'coef')
  if(nrp > 0L && (kint < 1L || kint > nrp))
    stop('illegal intercept number for kint')

  beta <- fit$coefficients
  bootdone <- length(boot.Coef <- fit$boot.Coef) && usebootcoef
  if(bootdone && conf.type %in% c('individual','simultaneous')) {
    warning('bootstrap estimates ignored when conf.type="simultaneous" or "individual"')
    bootdone <- FALSE
  }
  isMean <- length(fun) && ! is.function(fun) && fun == 'mean'
  if(isMean && ! bootdone & conf.int > 0 & ! bayes)
    stop('specifying fun="mean" with conf.int > 0 does not make sense when not running bootcov (with coef.reps=TRUE)')
  if(isMean && isorm && conf.int > 0)
    stop("fun='mean' not implemented for orm models when confidence intervals are requested")
  
  if(! length(time)) {
    xx <- Pred()
    if(length(attr(xx, "strata")) && any(is.na(attr(xx, "strata"))))
      warning("Computed stratum NA.  Requested stratum may not\nexist or reference values may be illegal strata combination\n")
    
    if(length(xx) == 0L)
      stop("model has no covariables and survival not plotted")
    xb <- if(is.list(xx)) xx$linear.predictors else xx
    if(isMean) {
      m <- Mean(fit)
      xb <- m(xb)
      }
    if(bootdone && conf.int > 0) {
      X <- Pred(type='x')
      pred <- t(matxv(X, boot.Coef,
                      kint=kint,  bmat=TRUE))
      if(isMean) {
        for(k in 1L : nrow(pred))
          pred[k,] <- m(pred[k,], intercepts=boot.Coef[k, 1L : nrp])
      }
      lim <- bootBCa(xb, pred, type=boot.type, n=nobs(fit), seed=fit$seed,
                     conf.int=conf.int)
      if(! is.matrix(lim)) lim <- as.matrix(lim)
      xx$lower <- lim[1L, ]
      xx$upper <- lim[2L, ]
    }    # end if(bootdone)
  }    # if(! length(time))
  else {   # time specified
    if(bootdone)
      stop('time may not be specified if bootcov was used with coef.reps=TRUE')
    xx <- survest(fit, settings, times=time, loglog=loglog, 
                  conf.int=conf.int)
    xb <- as.vector(xx$surv)
  }        # end time specified
  if(conf.int > 0) {
    lower <- as.vector(xx$lower)
    upper <- as.vector(xx$upper)
  }
  
  if(! isblrm && length(fun) && is.function(fun)) {
    ## If fun is for example the result of Mean.lrm or Quantile.orm
    ## and confidence limits are requested, must use entire design matrix
    ## to get variances.  Note that conf.int must also have been requested
    ## when calling Mean/Quantile
    xb <- if(conf.int > 0 &&
             all(c('X', 'conf.int') %in% names(formals(fun)))) {
            X  <- Pred(type='x')
            fun(xb, X=X, conf.int=conf.int)
          } else fun(xb)
    if(conf.int > 0 && length(lims <- attr(xb, 'limits'))) {
      lower <- lims$lower
      upper <- lims$upper
      } else if(conf.int > 0) {
        lower <- fun(lower)
        upper <- fun(upper)
      }	
  }
  
  settings$yhat   <- xb
  if(conf.int > 0) {
    settings$lower  <- lower
    settings$upper  <- upper
  }
  class(settings) <- c('Predict', 'data.frame')
  attr(settings, 'info') <- info
  settings
}

print.Predict <- function(x, ...) {
  print.data.frame(x)
  info <- attr(x, 'info')
  cat('\nResponse variable (y):', info$ylab,'\n')
  if(length(info$adjust) == 1)
    cat('\nAdjust to:',info$adjust,'\n')
  ci <- info$conf.int
  if(ci > 0)
    cat('\nLimits are', ci, 'confidence limits\n')
  invisible()
}

perimeter <- function(x, y, xinc=diff(range(x))/10., n=10.,
                      lowess.=TRUE) {

  s <- ! is.na(x+y)
  x <- x[s]
  y <- y[s]
  m <- length(x)
  if(m < n) stop("number of non-NA x must be >= n")

  i <- order(x)
  x <- x[i]
  y <- y[i]
  s <- n : (m - n + 1L)
  x <- x[s]
  y <- y[s]

  x <- round(x / xinc) * xinc

  g <- function(y, n) {
    y <- sort(y)
    m <- length(y)
    if(n > (m - n + 1L)) c(NA, NA)
    else c(y[n], y[m - n + 1L])
  }
  
  r <- unlist(tapply(y, x, g, n=n))
  i <- seq(1L, length(r), by=2)
  rlo <- r[i]
  rhi <- r[-i]
  s <- ! is.na(rlo + rhi)
  if(! any(s))
    stop("no intervals had sufficient y observations")

  x <- sort(unique(x))[s]
  rlo <- rlo[s]
  rhi <- rhi[s]
  if(lowess.) {
    rlo <- lowess(x, rlo)$y
    rhi <- lowess(x, rhi)$y
  }

  structure(cbind(x, rlo, rhi),
            dimnames=list(NULL, c("x","ymin","ymax")),
            class='perimeter')
}

rbind.Predict <- function(..., rename) {
  d <- list(...)
  ns <- length(d)
  if(ns == 1) return(d[[1]])
  
  info <- attr(d[[1L]], 'info')
  
  if(! missing(rename)) {
    trans <- function(input, rename) {
      k <- input %in% names(rename)
      if(any(k)) input[k] <- rename[input[k]]
      input
    }
    info$varying <- trans(info$varying, rename)
    names(info$Design$label) <- trans(names(info$Design$label), rename)
    names(info$Design$units) <- trans(names(info$Design$units), rename)
    names(info$Design$assume.code) <-
      trans(names(info$Design$assume.code), rename)
  }
    
  info$Design$label <- c(info$Design$label, .set.='Set')
  info$Design$units <- c(info$Design$units, .set.='')
  info$varying <- c(info$varying, '.set.')

  sets <- names(d)
  if(! length(sets)) sets <- paste('Set', 1 : ns)
  obs.each.set <- sapply(d, function(x) length(x[[1]]))
  .set. <- rep(sets, obs.each.set)
  .set. <- factor(.set., levels=unique(.set.))

  info$adjust <- sapply(d, function(x) attr(x, 'info')$adjust)

  ## If first varying variable is not always the same but the second
  ## is, take varying[1] to be ".x."

  ## What in the heck is this for???

  if(FALSE) {
  first  <- sapply(d, function(x) attr(x, 'info')$varying[1])
  second <- sapply(d, function(x) {
    y <- attr(x, 'info')$varying
    if(length(y) < 2) '' else y[2] } )
  if((length(unique(first)) > 1) && (all(second == second[1])))
    info$varying[1] <- '.x.'
  }

  if(! missing(rename)) for(i in 1L : ns)
    names(d[[i]]) <- trans(names(d[[i]]), rename)

  result <- do.call('rbind.data.frame', d)
  result$.set. <- .set.
  attr(result, 'info') <- info
  class(result) <- c('Predict', 'data.frame')
  result
}

Try the rms package in your browser

Any scripts or data that you put into this service are public.

rms documentation built on Sept. 11, 2024, 7:51 p.m.