Nothing
# This file is part of RStan
# Copyright (C) 2012, 2013, 2014, 2015, 2016, 2017 Trustees of Columbia University
#
# RStan is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 3
# of the License, or (at your option) any later version.
#
# RStan is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
paridx_fun <- function(names) {
# Args:
# names: names (character vector) such as lp__, treedepth__, stepsize__,
# alpha, beta.1,
# Returns:
# The indexes in the names that are parameters other than lp__,
# treedepth__, or stepsize__. The vector has attribute meta
# with the indexes of 'treedepth__', 'lp__', and 'stepsize__'
# if available.
sampler_param_names <- c('lp__', 'accept_stat__', 'treedepth__', 'stepsize__',
'divergent__', 'n_leapfrog__', "energy__")
metaidx <- match(sampler_param_names, names)
names(metaidx) <- sampler_param_names
paridx <- setdiff(seq_along(names), metaidx)
attr(paridx, "meta") <- metaidx[!sapply(metaidx, is.na)]
paridx
}
parse_stancsv_comments <- function(comments) {
# Parse the comments in Stan CSV files to get information such as
# iter, thin, seed, etc. This is specific to the CSV files
# generated from Stan
adapt_term_lineno <- which(grepl("Adaptation terminated", comments))[1]
if (is.na(adapt_term_lineno)) adapt_term_lineno <- length(comments)
time_lineno <- which(grepl("Elapsed Time", comments))
has_time <- length(time_lineno) > 0
len <- length(comments)
if (length(adapt_term_lineno) < 1)
adapt_term_lineno <- len
if (length(time_lineno) < 1)
warning("line with \"Elapsed Time\" not found")
if (adapt_term_lineno == len)
adaptation_info <- ''
else {
if (has_time)
adaptation_info <- paste(comments[(adapt_term_lineno+1):(time_lineno-1)], collapse = '\n')
else
adaptation_info <- paste(comments[(adapt_term_lineno+1):len], collapse = '\n')
}
if (has_time)
time_info <- comments[time_lineno:len]
else
time_info <- ''
if (adapt_term_lineno > 0) comments <- head(comments, adapt_term_lineno - 1L)
has_eq <- sapply(comments, function(i) grepl('=', i))
comments <- comments[has_eq]
comments <- gsub('^#+\\s*|\\s*|\\(Default\\)', '', comments)
eq_pos <- regexpr("=", comments, fixed = TRUE)
names0 <- substr(comments, 0, eq_pos - 1)
values <- as.list(substring(comments, eq_pos + 1))
id_idx <- which("id" == names0)
if (length(id_idx) > 0)
names0[id_idx] <- "chain_id"
compute_iter <- FALSE
id_warmup <- which("num_warmup" == names0)
if (length(id_warmup) > 0) {
names0[id_warmup] <- "warmup"
compute_iter <- TRUE
}
id_numsamples <- which("num_samples" == names0)
if (length(id_numsamples) > 0) {
names0[id_numsamples] <- "iter"
}
names(values) <- names0;
add_lst <- list(adaptation_info = adaptation_info,
has_time = has_time,
time_info = time_info)
sampler_t <- NULL
if (!is.null(values$algorithm) && is.null(values$sampler_t)) {
if (values$algorithm == 'rwm' || values$algorithm == 'Metropolis')
sampler_t <- "Metropolis"
else if (values$algorithm == 'hmc') {
if (values$engine == 'static') sampler_t <- "HMC"
else {
if (values$metric == 'unit_e') sampler_t <- "NUTS(unit_e)"
else if (values$metric == 'diag_e') sampler_t <- "NUTS(diag_e)"
else if (values$metric == 'dense_e') sampler_t <- "NUTS(dense_e)"
}
}
add_lst <- c(add_lst, sampler_t = sampler_t)
}
names1 <- intersect(c("thin", "iter", "warmup", "chain_id", "max_depth",
"num_samples", "num_warmup", "id",
"max_treedepth", "save_warmup"), names0)
names2 <- intersect(c("stepsize", "stepsize_jitter", "adapt_gamma", "adapt_kappa",
"adapt_delta", "gamma", "kappa", "delta", "t0",
"adapt_t0"), names0)
for (z in names1) values[[z]] <- as.integer(values[[z]])
for (z in names2) values[[z]] <- as.numeric(values[[z]])
if (compute_iter) values[["iter"]] <- values[["iter"]] + values[["warmup"]]
if ("output_samples" %in% names(values)){ ## fix missing values for variational
values[["iter"]] <- as.integer(values[["output_samples"]])
values[["warmup"]] <- 0L
values[["thin"]] <- 1L
values[["save_warmup"]] <- 1L
}
c(values, add_lst)
}
read_stan_csv <- function(csvfiles, col_major = TRUE) {
# Read the csv files saved from Stan (or RStan) to a stanfit object
# Args:
# csvfiles: csv files fitted for the same model; each file contains
# the sample of one chain
# col_major: the order for array parameters.
#
if (length(csvfiles) < 1)
stop("csvfiles does not contain any CSV file name")
g_skip <- 10
ss_lst <- vector("list", length(csvfiles))
cs_lst2 <- vector("list", length(csvfiles))
for (i in seq_along(csvfiles)) {
f = csvfiles[i]
header <- read_csv_header(f)
lineno <- attr(header, 'lineno')
vnames <- strsplit(header, ",")[[1]]
iter.count <- attr(header,"iter.count")
variable.count <- length(vnames)
lines = readLines(f)
comment_lines = grep("^#", lines)
comments = lines[comment_lines]
con = textConnection(lines[-comment_lines])
on.exit(close(con))
df = read.csv(con, colClasses = "numeric")
cs_lst2[[i]] <- parse_stancsv_comments(comments)
if("output_samples" %in% names(cs_lst2[[i]]))
df <- df[-1,] # remove the means
ss_lst[[i]] <- df
}
# use the first CSV file name as model name
m_name <- sub("(_\\d+)*$", '', filename_rm_ext(basename(csvfiles[1])))
sdate <- do.call(max, lapply(csvfiles, function(csv) file.info(csv)$mtime))
sdate <- format(sdate, "%a %b %d %X %Y") # same format as date()
chains <- length(ss_lst)
fnames <- names(ss_lst[[1]])
n_save <- nrow(ss_lst[[1]])
paridx <- paridx_fun(fnames)
lp__idx <- attr(paridx, 'meta')["lp__"]
par_fnames <- c(fnames[paridx], "lp__")
pars_oi <- unique_par(par_fnames)
dims_oi <- lapply(pars_oi,
function(i) {
pat <- paste('^', i, '(\\.\\d+)*$', sep = '')
i_fnames <- par_fnames[grepl(pat, par_fnames)]
get_dims_from_fnames(i_fnames, i)
})
names(dims_oi) <- pars_oi
midx <- if (!col_major) multi_idx_row2colm(dims_oi) else 1:length(par_fnames)
if (chains > 1) {
if (!all(sapply(ss_lst[-1], function(i) identical(names(i), fnames))))
stop('the CSV files do not have same parameters')
if (!all(sapply(ss_lst[-1], function(i) identical(length(i[[1]]), n_save))))
stop('the number of iterations are not the same in all CSV files')
}
mode <- 0L
samples <- lapply(ss_lst,
function(df) {
ss <- df[c(paridx, lp__idx)[midx]]
attr(ss, "sampler_params") <- df[setdiff(attr(paridx, 'meta'), lp__idx)]
ss
})
par_fnames <- par_fnames[midx]
for (i in seq_along(samples)) {
attr(samples[[i]], "adaptation_info") <- cs_lst2[[i]]$adaptation_info
attr(samples[[i]], "args") <-
list(sampler_t = cs_lst2[[i]]$sampler_t,
chain_id = cs_lst2[[i]]$chain_id)
if (cs_lst2[[i]]$has_time)
attr(samples[[i]], "elapsed_time") <- get_time_from_csv(cs_lst2[[i]]$time_info)
}
save_warmup <- sapply(cs_lst2, function(i) i$save_warmup)
warmup <- sapply(cs_lst2, function(i) i$warmup)
thin <- sapply(cs_lst2, function(i) i$thin)
iter <- sapply(cs_lst2, function(i) i$iter)
if (!all_int_eq(warmup) || !all_int_eq(thin) || !all_int_eq(iter))
stop("not all iter/warmups/thin are the same in all CSV files")
n_kept0 <- 1 + (iter - warmup - 1) %/% thin
warmup2 <- 0
if (max(save_warmup) == 0L) { # all equal to 0L
n_kept <- n_save
} else if (min(save_warmup) == 1L) { # all equals to 1L
warmup2 <- 1 + (warmup[1] - 1) %/% thin[1]
n_kept <- n_save - warmup2
}
if (n_kept0[1] != n_kept) {
warning("the number of iterations after warmup found (", n_kept,
") does not match iter/warmup/thin from CSV comments (",
paste(n_kept0, collapse = ','), ")")
if (n_kept < 0) {
warmup <- warmup + n_kept
n_kept <- 0
mode <- 2L
}
n_kept0 <- n_save
iter <- n_save
for (i in 1:length(cs_lst2)) {
cs_lst2[[i]]$warmup <- warmup
cs_lst2[[i]]$iter <- iter
}
}
idx_kept <- if (warmup2 == 0) 1:n_kept else -(1:warmup2)
for (i in seq_along(samples)) {
m <- vapply(samples[[i]], function(x) mean(x[idx_kept]), numeric(1))
attr(samples[[i]], "mean_pars") <- m[-length(m)]
attr(samples[[i]], "mean_lp__") <- m["lp__"]
}
perm_lst <- lapply(1:chains, function(id) sample.int(n_kept))
sim = list(samples = samples,
iter = iter[1],
thin = thin[1],
warmup = warmup[1],
chains = chains,
n_save = rep(n_save, chains),
warmup2 = rep(warmup2, chains),
permutation = perm_lst,
pars_oi = pars_oi,
dims_oi = dims_oi,
fnames_oi = dotfnames_to_sqrfnames(par_fnames),
n_flatnames = length(par_fnames))
null_dso <- new("cxxdso", sig = list(character(0)), dso_saved = FALSE, dso_filename = character(0),
modulename = character(0), system = R.version$system, cxxflags = character(0),
.CXXDSOMISC = new.env(parent = emptyenv()))
null_sm <- new("stanmodel", model_name = m_name, model_code = character(0),
model_cpp = list(), dso = null_dso)
nfit <- new("stanfit",
model_name = m_name,
model_pars = pars_oi,
par_dims = dims_oi,
mode = mode,
sim = sim,
inits = list(),
stan_args = cs_lst2,
stanmodel = null_sm,
date = sdate, # not the time of sampling
.MISC = new.env(parent = emptyenv()))
return(nfit)
}
read_one_stan_csv <- function(csvfile) {
if (length(csvfile) != 1)
stop("'csvfile' must be of length 1")
if (!file.exists(csvfile))
stop("'csvfile' does not exist on the disk")
mark <- 0L
fields <- character()
while(length(fields) == 0) {
mark <- mark + 1L
fields <- scan(csvfile, what = character(), sep = ",",
comment.char = "#", nlines = mark, quiet = TRUE)
}
comments <- scan(csvfile, what = character(), sep = "\n", comment.char = "",
nlines = mark + 2L, quiet = TRUE)
comments <- gsub("#", "", comments, fixed = TRUE)
comments <- gsub("(Default)", "", comments, fixed = TRUE)
comments <- grep("=", comments, fixed = TRUE, value = TRUE)
comments <- strsplit(comments, split = "=", fixed = TRUE)
comments <- lapply(comments, FUN = trimws)
comments <- sapply(comments, FUN = function(x) {
y <- x[2]
names(y) <- x[1]
return(y)
})
method <- comments["algorithm"]
if (method %in% c("meanfield", "fullrank")) {
draws <- scan(csvfile, what = double(), sep = ",", comment.char = "",
quiet = TRUE, skip = mark + 2L,
nlines = mark + as.integer(comments["output_samples"]) + 3L)
timings <- NULL
}
else { # sampling
iter <- as.integer(comments["iter"])
draws <- scan(csvfile, what = double(), sep = ",", comment.char = "",
quiet = TRUE, skip = mark, nlines = mark + iter)
timings <- scan(csvfile, what = character(), sep = "\n", comment.char = "",
quiet = TRUE, skip = mark + iter)
}
draws <- matrix(draws, ncol = length(fields), byrow = TRUE)
colnames(draws) <- fields
draws <- as.data.frame(draws)
attributes(draws)$comments <- comments
attributes(draws)$timings <- timings
return(draws)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.