Nothing
# library(boot)
# library(numbers)
# Sub-files:
# * sobolroa_subroutines.R
# LAST MODIFIED:
# December 9, 2016
# AUTHOR:
# Gilquin Laurent
# SUMMARY:
# Extension of the replication procedure (Tissot and Prieur 2015) to deal with sets of constraints (Gilquin et al., 2015).
# This procedure estimates either all first-order or all second-order Sobol indices given two
# replicated designs.
sobolroauc=function(model=NULL, factors, constraints=NULL, N, p=1, order, tail=TRUE, conf=0.95, nboot=0, ...) {
#Initialisation
if (is.character(factors)) {
X.labels <- factors
d <- length(X.labels)
}
else if (factors%%1==0 & factors>0) {
d <- factors
X.labels <- paste("X", 1:d, sep = "")
}
else {
stop("invalid argument 'factors', waiting for a positive integer or a character string vector (names).")
}
if(!is.list(constraints)) {
stop("invalid argument 'constraints', waiting for a list")
}
if (N%%1!=0 | N<=0) {
stop("invalid argument 'N', waiting for a positive integer.")
}
if (p%%1!=0 | p<=0) {
stop("invalid argument 'p', waiting for a positive integer.")
}
if (order!=1 | order!=2) {
t <- order
}
else {
stop("invalid argument 'order', waiting for value 1 or 2.")
}
if (conf < 0 | conf > 1) {
stop("invalid argument 'conf', waiting for a value in ]0,1[.")
}
if (!is.logical(tail)) {
stop("invalid argument 'tail', waiting for a boolean.")
}
if(nboot%%1!=0 | nboot<0){
stop("invalid argument 'nboot', waiting for a positive integer or zero.")
}
# factors resizing
const <- length(unlist(constraints)) # number of constrained variables
const_set <- length(constraints) # number of set of constrained variables
newd <- d-const+const_set # number of set variables
if(const_set!=0){
ind <- (1:d)[-unlist(constraints)]
ind_length <- length(ind)
} else {
ind <- 1:d
ind_length <- length(ind)
}
# Conditions checking for case order==2:
if (t==2) {
if(N>=(newd-1)^2){
q <- sqrt(N)
if (sqrt(N)%%1==0) {
if (requireNamespace("numbers", quietly = TRUE)){
if (numbers::isPrime(sqrt(N))){
q <- sqrt(N)
} else {
if (tail){
q <- numbers::previousPrime(sqrt(N))
N <- q^2
} else {
q <- numbers::nextPrime(sqrt(N))
N <- q^2
}
warning("The value entered for N is not the square of a prime number. It has been replaced by: ",paste(q^2))
}
}
}
if (sqrt(N)%%1!=0) {
if (requireNamespace("numbers", quietly = TRUE)){
if (tail){
q <- numbers::previousPrime(sqrt(N))
N <- q^2
} else {
q <- numbers::nextPrime(sqrt(N))
N <- q^2
}
}
warning("The value entered for N is not the square of a prime number. It has been replaced by: ",paste(q^2))
}
}
if(N<(newd-1)^2){
if (requireNamespace("numbers", quietly = TRUE)){
if(numbers::isPrime(newd-1)){
q <- newd-1
N <- q^2
} else {
q <- numbers::nextPrime(newd-1)
N <- q^2
}
}
warning("The value entered for N is not satisfying the constraint N >= (newd-1)^2. It has been replaced by: ",paste(q^2))
}
}
# Main structure allocation
doe <- matrix(NA,nrow=N,ncol=2*d)
if(t==1){
# matrix of permutations
perm <- replicate(2*newd,sample(N))
# for standardisation
doe0 <- replicate(newd,seq(1,N))
# matrix of random numbers
mat_rand <- matrix(runif(d*N),nrow=N,ncol=d)
} else {
# matrix of permutations
perm <- replicate(2*newd,sample(q))
# orthogonal array
doe0 <- apply(outer(sobolroa.Hadam(q)[,1:newd],0:(q-1),'+')%%q+1,2,I)
if (q==newd-1){
doe0 <- cbind(doe0,rep(seq(1,q),q))
}
# matrix of random numbers
mat_rand <- matrix(runif(d*q),nrow=q,ncol=d)
}
# construction of the two replicated designs
discret <- ifelse(t==1,N,q)
# sampling of the non-constrained factors
if (ind_length!=0){
for (i in 1:ind_length){
ind_col <- ind[i]
p1 <- perm[doe0[,i],c(i,d+i)]
doe[,c(ind_col,d+ind_col)] <- (p1-mat_rand[p1,ind_col])/discret
}
}
# sampling of the constrained factors
if (const_set!=0){
for (i in 1:const_set){
numb_col <- d-const+i
index <- constraints[[i]]
index_length <- length(index)
# call to rowsort (external C function)
C_x <- c(t(mat_rand[,index]))
C_inter <- rep(0,index_length)
C_out <- rep(0,length(C_x))
C_res <- .C("LG_rowsort",as.integer(discret),as.double(C_x),as.integer(index_length),
as.double(C_inter),as.double(C_out))[[5]]
#Space-filling simplex sampling
U <- matrix(C_res,ncol=index_length,byrow=TRUE)
U <- c(t(matrix(c(rep(0,discret),U,rep(1,discret)),ncol=index_length+2)))
S <- U[-1]-U[-length(U)]
S <- matrix(S[S>0],ncol=index_length+1,byrow=TRUE)
#Adjust the subdivision
test <- length(unlist(strsplit(paste(discret^(1/index_length)),"")))<5
if (!test){
numb_simplex <- floor(discret^(1/index_length))+1
simplex <- sobolroauc.simplex_create(numb_simplex+1,index_length)
drop <- sample(1:numb_simplex^index_length,numb_simplex^index_length-discret)
P <- matrix(c(t(S))*simplex$p[t(simplex$s[-drop,]),],nrow=index_length+1)
} else {
numb_simplex <- floor(discret^(1/index_length)-10^(-5))+1
simplex <- sobolroauc.simplex_create(numb_simplex+1,index_length)
P <- matrix(c(t(S))*simplex$p[t(simplex$s),],nrow=index_length+1)
}
#Fill the design
P <- matrix(colSums(P),ncol=index_length)
doe[,index] <- P[perm[doe0[,numb_col],numb_col],]
doe[,d+index] <- P[perm[doe0[,numb_col],newd+numb_col],]
}
#Deleting unused objects
rm(C_x,C_inter,C_out,U,S,P,numb_simplex,simplex,drop)
}
#Stocking the ordering matrix
if(t==1){
loop_index <- matrix(1:newd,ncol=1)
} else {
loop_index <- t(utils::combn(newd,2))
}
RP <- matrix(NA,nrow=N,ncol=nrow(loop_index))
if(const_set!=0){
col_ind <- c(ind,sapply(constraints, "[[", 1))
} else {
col_ind <- 1:d
}
for(ind in 1:nrow(loop_index)){
p1 <- do.call(base::order,as.data.frame(doe[,col_ind[loop_index[ind,]]]))
p2 <- do.call(base::order,as.data.frame(doe[,d+col_ind[loop_index[ind,]]]))
RP[,ind] <- p2[order(p1)]
}
#Deleting unused objects
rm(perm,mat_rand,p1,p2,loop_index,discret,col_ind)
if(t==1){
doe0 <- NULL
}
#Stocking of the two replicated designs
X <- rbind(doe[,1:d],doe[,(d+1):(2*d)])
colnames(X) <- X.labels
# object of class "sobolroauc"
x <- list(model=model, factors=factors, constraints=constraints, X=X, OA=doe0, N=N, p=p, order=t,
conf=conf, tail=tail, nboot=nboot, RP=RP, call=match.call())
class(x) <- "sobolroauc"
# computing the response if the model is given
if (!is.null(x$model)) {
response(x, ...)
tell(x, ...)
}
return(x)
}
# --------------------------------------------------------------------
# Estim method to estimate Sobol' indices
estim.sobolroauc=function(data, i = 1 : nrow(data), RP, t, p, ...){
# local variables
nd <- ncol(RP)
newd <- ifelse(t==1,nd,Re(polyroot(c(-2*nd,-1,1))[1]))
N <- nrow(RP)
Ya <- matrix(data[i,seq(1,2*p,by=2)],ncol=p)
Yb <- matrix(data[,seq(1,2*p,by=2)+1],ncol=p)
#Missing values purpose
na.rm <- TRUE
Na <- apply(Ya,2,function(x){as.numeric(sum(!is.na(x)))})
#Variance calculation
V <- sum(diag(var(Ya, na.rm=TRUE)))
# Loop index
if(t==1){
loop_index <- matrix(1:newd,ncol=1)
} else {
loop_index <- t(utils::combn(newd,2))
}
#Sobol' indices calculation
VCE <- rep(NA,ncol=nrow(loop_index))
for (ind in 1:nrow(loop_index)) {
Y1 <- Ya
Y2 <- matrix(Yb[RP[i,ind],],ncol=p)
Nb <- apply(Y2,2,function(x){as.numeric(sum(!is.na(x)))})
Nab <- apply(Y1+Y2,2,function(x){as.numeric(sum(!is.na(x)))})
VCE[ind] <- sum(colSums(Y1*Y2,na.rm=na.rm)/Nab-colSums(Y1,na.rm=na.rm)*colSums(Y2,na.rm=na.rm)/(Na*Nb))
}
return(c(V,VCE))
}
# --------------------------------------------------------------------
# Tell method to estimate Sobol' indices and compute bootstrap confidence intervals
tell.sobolroauc=function(x, y = NULL, ...){
id <- deparse(substitute(x))
if (! is.null(y)) {
x$y <- y
}
else if (is.null(x$y)) {
stop("y not found")
}
# Sobol' indices estimation and confidence intervals
d <- x$factors
constraints <- x$constraints
t <- x$order
p <- x$p
RP <- x$RP
nd <- ncol(RP)
data <- matrix(x$y,nrow=x$N)
if (x$nboot == 0){
V <- data.frame(original = estim.sobolroauc(data=data, RP=RP, t=t, p=p))
S <- V[2:(nd + 1), 1, drop=FALSE] / V[1,1]
} else{
V.boot <- boot(data=data, estim.sobolroauc, R = x$nboot, RP=RP, t=t, p=p)
V <- bootstats(V.boot, x$conf, "basic")
S.boot <- V.boot
S.boot$t0 <- V.boot$t0[2:(nd + 1)] / V.boot$t0[1]
S.boot$t <- V.boot$t[,2:(nd + 1)] / V.boot$t[,1]
S <- bootstats(S.boot, x$conf, "basic")
}
# output
x$V <- V
x$S <- S
const <- length(unlist(constraints))
const_set <- length(constraints)
newd <- d-const+const_set
if(t==1){
loop_index <- matrix(1:newd,ncol=1)
} else {
loop_index <- t(combn(newd,2))
}
if (const_set!=0){
name_list <- unlist(lapply(c((1:d)[-unlist(constraints)],constraints),function(x){paste("{",paste(x,collapse=","),"}",sep="")}))
} else {
name_list <- paste("{",1:d,"}",sep="")
}
loop_index <- matrix(name_list[loop_index],ncol=t)
rownames <- paste("S",apply(loop_index,1,paste,collapse=""),sep= "")
rownames(x$S) <- rownames
rownames(x$V) <- c("global",gsub("S","V",rownames))
assign(id, x, parent.frame())
}
# --------------------------------------------------------------------
# Print method to copy results: model variance, percentage of missing values and Sobol' estimates.
print.sobolroauc <- function(x, ...) {
cat("\nCall:\n", deparse(x$call), "\n", sep = "")
cat("\nModel runs:", 2*x$N, "\n")
if (!is.null(x$y)) {
if (any(is.na(x$y))){
tauxNa <- as.numeric(length(x$y[is.na(x$y)]))/length(x$y)*100
cat("\nPercentage of missing values(NA):", tauxNa, "\n")
}
cat("\nModel variance:\n")
print(x$V[1,1])
if (x$order==1){
cat("\nFirst-order indices:\n")
print(x$S)
}
if (x$order==2){
cat("\nClosed second-order indices:\n")
print(x$S)
}
}
}
# --------------------------------------------------------------------
# Plot method to draw Sobol' estimates
plot.sobolroauc <- function(x, ylim = c(0, 1), ...) {
if (!is.null(x$y)) {
nodeplot(x$S, ylim = ylim, ...)
if (x$order==1){
legend(x = "topright", legend = c("First-order indices"))
}
else{
legend(x = "topright", legend = c("Closed second-order indices"))
}
}
}
ggplot.sobolroauc <- function(data, mapping = aes(), ylim = c(0,1), ..., environment = parent.frame()) {
x <- data
if (!is.null(x$y)) {
if (x$order==1){
title <- "First-order indices"
}
else{
title <- "Closed second-order indices"
}
nodeggplot(listx = list(x$S), xname = title, ylim = ylim, title = title)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.