R/ml_classification_logistic_regression.R

Defines functions validator_ml_logistic_regression cast_double_matrix new_ml_binary_logistic_regression_training_summary new_ml_binary_logistic_regression_summary new_ml_logistic_regression_training_summary new_ml_logistic_regression_summary new_ml_logistic_regression_model new_ml_logistic_regression ml_logistic_regression.tbl_spark ml_logistic_regression.ml_pipeline ml_logistic_regression.spark_connection ml_logistic_regression

Documented in ml_logistic_regression

#' Spark ML -- Logistic Regression
#'
#' Perform classification using logistic regression.
#'
#' @template roxlate-ml-algo
#' @template roxlate-ml-formula-params
#' @template roxlate-ml-linear-regression-params
#' @template roxlate-ml-predictor-params
#' @template roxlate-ml-probabilistic-classifier-params
#' @param family (Spark 2.1.0+) Param for the name of family which is a description of the label distribution to be used in the model. Supported options: "auto", "binomial", and "multinomial."
#' @template roxlate-ml-elastic-net-param
#' @param threshold in binary classification prediction, in range [0, 1].
#' @template roxlate-ml-aggregation-depth
#' @param lower_bounds_on_coefficients (Spark 2.2.0+) Lower bounds on coefficients if fitting under bound constrained optimization.
#'   The bound matrix must be compatible with the shape (1, number of features) for binomial regression, or (number of classes, number of features) for multinomial regression.
#' @param lower_bounds_on_intercepts (Spark 2.2.0+) Lower bounds on intercepts if fitting under bound constrained optimization.
#'   The bounds vector size must be equal with 1 for binomial regression, or the number of classes for multinomial regression.
#' @param upper_bounds_on_coefficients (Spark 2.2.0+) Upper bounds on coefficients if fitting under bound constrained optimization.
#'   The bound matrix must be compatible with the shape (1, number of features) for binomial regression, or (number of classes, number of features) for multinomial regression.
#' @param upper_bounds_on_intercepts (Spark 2.2.0+) Upper bounds on intercepts if fitting under bound constrained optimization.
#'   The bounds vector size must be equal with 1 for binomial regression, or the number of classes for multinomial regression.
#'
#' @examples
#' \dontrun{
#' sc <- spark_connect(master = "local")
#' mtcars_tbl <- sdf_copy_to(sc, mtcars, name = "mtcars_tbl", overwrite = TRUE)
#'
#' partitions <- mtcars_tbl %>%
#'   sdf_random_split(training = 0.7, test = 0.3, seed = 1111)
#'
#' mtcars_training <- partitions$training
#' mtcars_test <- partitions$test
#'
#' lr_model <- mtcars_training %>%
#'   ml_logistic_regression(am ~ gear + carb)
#'
#' pred <- ml_predict(lr_model, mtcars_test)
#'
#' ml_binary_classification_evaluator(pred)
#' }
#'
#' @export
ml_logistic_regression <- function(x, formula = NULL, fit_intercept = TRUE,
                                   elastic_net_param = 0, reg_param = 0, max_iter = 100,
                                   threshold = 0.5, thresholds = NULL, tol = 1e-06,
                                   weight_col = NULL, aggregation_depth = 2,
                                   lower_bounds_on_coefficients = NULL, lower_bounds_on_intercepts = NULL,
                                   upper_bounds_on_coefficients = NULL, upper_bounds_on_intercepts = NULL,
                                   features_col = "features", label_col = "label", family = "auto",
                                   prediction_col = "prediction", probability_col = "probability",
                                   raw_prediction_col = "rawPrediction",
                                   uid = random_string("logistic_regression_"), ...) {
  check_dots_used()
  UseMethod("ml_logistic_regression")
}

#' @export
ml_logistic_regression.spark_connection <- function(x, formula = NULL, fit_intercept = TRUE,
                                                    elastic_net_param = 0, reg_param = 0, max_iter = 100,
                                                    threshold = 0.5, thresholds = NULL, tol = 1e-06,
                                                    weight_col = NULL, aggregation_depth = 2,
                                                    lower_bounds_on_coefficients = NULL, lower_bounds_on_intercepts = NULL,
                                                    upper_bounds_on_coefficients = NULL, upper_bounds_on_intercepts = NULL,
                                                    features_col = "features", label_col = "label", family = "auto",
                                                    prediction_col = "prediction", probability_col = "probability",
                                                    raw_prediction_col = "rawPrediction",
                                                    uid = random_string("logistic_regression_"), ...) {
  .args <- list(
    formula = formula,
    fit_intercept = fit_intercept,
    elastic_net_param = elastic_net_param,
    reg_param = reg_param,
    max_iter = max_iter,
    threshold = threshold,
    thresholds = thresholds,
    tol = tol,
    weight_col = weight_col,
    aggregation_depth = aggregation_depth,
    lower_bounds_on_coefficients = lower_bounds_on_coefficients,
    lower_bounds_on_intercepts = lower_bounds_on_intercepts,
    upper_bounds_on_coefficients = upper_bounds_on_coefficients,
    upper_bounds_on_intercepts = upper_bounds_on_intercepts,
    features_col = features_col,
    label_col = label_col,
    family = family,
    prediction_col = prediction_col,
    probability_col = probability_col,
    raw_prediction_col = raw_prediction_col,
    uid = uid
  ) %>%
    c(rlang::dots_list(...)) %>%
    validator_ml_logistic_regression()

  jobj <- spark_pipeline_stage(
    x, "org.apache.spark.ml.classification.LogisticRegression", .args[["uid"]],
    features_col = .args[["features_col"]], label_col = .args[["label_col"]],
    prediction_col = .args[["prediction_col"]], probability_col = .args[["probability_col"]],
    raw_prediction_col = .args[["raw_prediction_col"]]
  ) %>%
    invoke("setFitIntercept", .args[["fit_intercept"]]) %>%
    invoke("setElasticNetParam", .args[["elastic_net_param"]]) %>%
    invoke("setRegParam", .args[["reg_param"]]) %>%
    invoke("setMaxIter", .args[["max_iter"]]) %>%
    invoke("setThreshold", .args[["threshold"]]) %>%
    invoke("setTol", .args[["tol"]]) %>%
    jobj_set_param("setFamily", .args[["family"]], "2.1.0", "auto") %>%
    jobj_set_param("setAggregationDepth", .args[["aggregation_depth"]], "2.1.0", 2) %>%
    jobj_set_param("setThresholds", .args[["thresholds"]]) %>%
    jobj_set_param("setWeightCol", .args[["weight_col"]]) %>%
    jobj_set_param(
      "setLowerBoundsOnCoefficients",
      spark_dense_matrix(x, .args[["lower_bounds_on_coefficients"]]),
      "2.2.0"
    ) %>%
    jobj_set_param(
      "setUpperBoundsOnCoefficients",
      spark_dense_matrix(x, .args[["upper_bounds_on_coefficients"]]),
      "2.2.0"
    ) %>%
    jobj_set_param(
      "setLowerBoundsOnIntercepts",
      spark_dense_vector(x, .args[["lower_bounds_on_intercepts"]]),
      "2.2.0"
    ) %>%
    jobj_set_param(
      "setUpperBoundsOnIntercepts",
      spark_dense_vector(x, .args[["upper_bounds_on_intercepts"]]),
      "2.2.0"
    )

  new_ml_logistic_regression(jobj)
}

#' @export
ml_logistic_regression.ml_pipeline <- function(x, formula = NULL, fit_intercept = TRUE,
                                               elastic_net_param = 0, reg_param = 0, max_iter = 100,
                                               threshold = 0.5, thresholds = NULL, tol = 1e-06,
                                               weight_col = NULL, aggregation_depth = 2,
                                               lower_bounds_on_coefficients = NULL, lower_bounds_on_intercepts = NULL,
                                               upper_bounds_on_coefficients = NULL, upper_bounds_on_intercepts = NULL,
                                               features_col = "features", label_col = "label", family = "auto",
                                               prediction_col = "prediction", probability_col = "probability",
                                               raw_prediction_col = "rawPrediction",
                                               uid = random_string("logistic_regression_"), ...) {
  stage <- ml_logistic_regression.spark_connection(
    x = spark_connection(x),
    formula = formula,
    fit_intercept = fit_intercept,
    elastic_net_param = elastic_net_param,
    reg_param = reg_param,
    max_iter = max_iter,
    threshold = threshold,
    thresholds = thresholds,
    tol = tol,
    weight_col = weight_col,
    aggregation_depth = aggregation_depth,
    lower_bounds_on_coefficients = lower_bounds_on_coefficients,
    lower_bounds_on_intercepts = lower_bounds_on_intercepts,
    upper_bounds_on_coefficients = upper_bounds_on_coefficients,
    upper_bounds_on_intercepts = upper_bounds_on_intercepts,
    features_col = features_col,
    label_col = label_col,
    family = family,
    prediction_col = prediction_col,
    probability_col = probability_col,
    raw_prediction_col = raw_prediction_col,
    uid = uid,
    ...
  )

  ml_add_stage(x, stage)
}

#' @export
ml_logistic_regression.tbl_spark <- function(x, formula = NULL, fit_intercept = TRUE,
                                             elastic_net_param = 0, reg_param = 0, max_iter = 100,
                                             threshold = 0.5, thresholds = NULL, tol = 1e-06,
                                             weight_col = NULL, aggregation_depth = 2,
                                             lower_bounds_on_coefficients = NULL, lower_bounds_on_intercepts = NULL,
                                             upper_bounds_on_coefficients = NULL, upper_bounds_on_intercepts = NULL,
                                             features_col = "features", label_col = "label", family = "auto",
                                             prediction_col = "prediction", probability_col = "probability",
                                             raw_prediction_col = "rawPrediction",
                                             uid = random_string("logistic_regression_"),
                                             response = NULL, features = NULL,
                                             predicted_label_col = "predicted_label", ...) {
  formula <- ml_standardize_formula(formula, response, features)

  stage <- ml_logistic_regression.spark_connection(
    x = spark_connection(x),
    formula = NULL,
    fit_intercept = fit_intercept,
    elastic_net_param = elastic_net_param,
    reg_param = reg_param,
    max_iter = max_iter,
    threshold = threshold,
    thresholds = thresholds,
    tol = tol,
    weight_col = weight_col,
    aggregation_depth = aggregation_depth,
    lower_bounds_on_coefficients = lower_bounds_on_coefficients,
    lower_bounds_on_intercepts = lower_bounds_on_intercepts,
    upper_bounds_on_coefficients = upper_bounds_on_coefficients,
    upper_bounds_on_intercepts = upper_bounds_on_intercepts,
    features_col = features_col,
    label_col = label_col,
    family = family,
    prediction_col = prediction_col,
    probability_col = probability_col,
    raw_prediction_col = raw_prediction_col,
    uid = uid,
    ...
  )

  if (is.null(formula)) {
    stage %>%
      ml_fit(x)
  } else {
    ml_construct_model_supervised(
      new_ml_model_logistic_regression,
      predictor = stage,
      formula = formula,
      dataset = x,
      features_col = features_col,
      label_col = label_col,
      predicted_label_col = predicted_label_col
    )
  }
}

new_ml_logistic_regression <- function(jobj) {
  new_ml_probabilistic_classifier(jobj, class = "ml_logistic_regression")
}

new_ml_logistic_regression_model <- function(jobj) {
  is_multinomial <- invoke(jobj, "numClasses") > 2

  summary <- if (invoke(jobj, "hasSummary")) {
    if (!is_multinomial && spark_version(spark_connection(jobj)) >= "2.3.0") {
      new_ml_binary_logistic_regression_training_summary(invoke(jobj, "binarySummary"))
    } else {
      new_ml_logistic_regression_training_summary(invoke(jobj, "summary"))
    }
  }

  new_ml_probabilistic_classification_model(
    jobj,
    coefficients = if (is_multinomial) NULL else read_spark_vector(jobj, "coefficients"),
    coefficient_matrix = possibly_null(~ read_spark_matrix(jobj, "coefficientMatrix"))(),
    intercept = if (is_multinomial) NULL else invoke(jobj, "intercept"),
    intercept_vector = possibly_null(~ read_spark_vector(jobj, "interceptVector"))(),
    threshold = if (ml_is_set(jobj, "threshold")) invoke(jobj, "getThreshold") else NULL,
    summary = summary,
    class = "ml_logistic_regression_model"
  )
}

new_ml_logistic_regression_summary <- function(jobj, ..., class = character()) {
  s <- new_ml_summary(
    jobj,
    features_col = function() invoke(jobj, "featuresCol"),
    label_col = function() invoke(jobj, "labelCol"),
    predictions = function() {
      invoke(jobj, "predictions") %>%
        sdf_register()
    },
    probability_col = function() invoke(jobj, "probabilityCol"),
    ...,
    class = c(class, "ml_logistic_regression_summary")
  )

  if (spark_version(spark_connection(jobj)) >= "2.3.0") {
    s$prediction_col <- function() invoke(jobj, "predictionCol")
    s$accuracy <- function() invoke(jobj, "accuracy")
    s$f_measure_by_label <- function(beta = NULL) {
      beta <- cast_nullable_scalar_double(beta)
      if (is.null(beta)) invoke(jobj, "fMeasureByLabel") else invoke(jobj, "fMeasureByLabel", beta)
    }
    s$false_positive_rate_by_label <- function() invoke(jobj, "falsePositiveRateByLabel")
    s$labels <- function() invoke(jobj, "labels")
    s$precision_by_label <- function() invoke(jobj, "precisionByLabel")
    s$recall_by_label <- function() invoke(jobj, "recallByLabel")
    s$true_positive_rate_by_label <- function() invoke(jobj, "truePositiveRateByLabel")
    s$weighted_f_measure <- function(beta = NULL) {
      beta <- cast_nullable_scalar_double(beta)
      if (is.null(beta)) invoke(jobj, "weightedFMeasure") else invoke(jobj, "weightedFMeasure", beta)
    }
    s$weighted_false_positive_rate <- function() invoke(jobj, "weightedFalsePositiveRate")
    s$weighted_precision <- function() invoke(jobj, "weightedPrecision")
    s$weighted_recall <- function() invoke(jobj, "weightedRecall")
    s$weighted_true_positive_rate <- function() invoke(jobj, "weightedTruePositiveRate")
  }

  s
}

new_ml_logistic_regression_training_summary <- function(jobj) {
  new_ml_logistic_regression_summary(
    jobj,
    objective_history = function() invoke(jobj, "objectiveHistory"),
    total_iterations = function() invoke(jobj, "totalIterations"),
    class = "ml_logistic_regression_training_summary"
  )
}

new_ml_binary_logistic_regression_summary <- function(jobj, ..., class = character()) {
  new_ml_logistic_regression_summary(
    jobj,
    area_under_roc = function() invoke(jobj, "areaUnderROC"),
    f_measure_by_threshold = function() {
      invoke(jobj, "fMeasureByThreshold") %>%
        sdf_register()
    },
    pr = function() {
      invoke(jobj, "pr") %>%
        sdf_register()
    },
    precision_by_threshold = function() {
      invoke(jobj, "precisionByThreshold") %>%
        sdf_register()
    },
    recall_by_threshold = function() {
      invoke(jobj, "recallByThreshold") %>%
        sdf_register()
    },
    roc = function() {
      invoke(jobj, "roc") %>%
        sdf_register()
    },
    class = c(class, "ml_binary_logistic_regression_summary")
  )
}

new_ml_binary_logistic_regression_training_summary <- function(jobj) {
  new_ml_binary_logistic_regression_summary(
    jobj,
    objective_history = function() invoke(jobj, "objectiveHistory"),
    total_iterations = function() invoke(jobj, "totalIterations"),
    class = "ml_binary_logistic_regression_training_summary"
  )
}

cast_double_matrix <- function(mat) {
  if (is.null(mat)) {
    return(mat)
  }
  mat %>%
    cast_double() %>%
    matrix(nrow = nrow(mat))
}

validator_ml_logistic_regression <- function(.args) {
  .args <- validate_args_classifier(.args)

  .args[["weight_col"]] <- cast_nullable_string(.args[["weight_col"]])
  .args[["elastic_net_param"]] <- cast_scalar_double(.args[["elastic_net_param"]])
  .args[["reg_param"]] <- cast_scalar_double(.args[["reg_param"]])
  .args[["max_iter"]] <- cast_scalar_integer(.args[["max_iter"]])
  .args[["family"]] <- cast_choice(.args[["family"]], c("auto", "binomial", "multinomial"))
  .args[["fit_intercept"]] <- cast_scalar_logical(.args[["fit_intercept"]])
  .args[["threshold"]] <- cast_scalar_double(.args[["threshold"]])
  .args[["thresholds"]] <- cast_nullable_double_list(.args[["thresholds"]])
  .args[["weight_col"]] <- cast_nullable_string(.args[["weight_col"]])
  .args[["aggregation_depth"]] <- cast_scalar_integer(.args[["aggregation_depth"]])
  .args[["lower_bounds_on_coefficients"]] <- cast_double_matrix(.args[["lower_bounds_on_coefficients"]])
  .args[["upper_bounds_on_coefficients"]] <- cast_double_matrix(.args[["upper_bounds_on_coefficients"]])
  .args[["lower_bounds_on_intercepts"]] <- cast_nullable_double_list(.args[["lower_bounds_on_intercepts"]])
  .args[["upper_bounds_on_intercepts"]] <- cast_nullable_double_list(.args[["upper_bounds_on_intercepts"]])
  .args
}

Try the sparklyr package in your browser

Any scripts or data that you put into this service are public.

sparklyr documentation built on June 17, 2021, 5:06 p.m.