Description Usage Arguments Value Note References See Also Examples
This function infers a SIMoNe network from expression data. This gives a non-supervised gaussian network with partial correlation computations.
1 2 | getSIMoNeNet(DEGeneExpr, NEdges = NA, ClusterMethod = "both", AddAnnotations = F,
MartDataset = "hsapiens_gene_ensembl")
|
DEGeneExpr |
Object of class DEGeneExpr |
NEdges |
Criter selection of SIMoNe model. Can be the number of edges, 'BIC' or 'AIC'. If it is set to NA, the function chooses the number of edges by computing the mean between those with maximal AIC and BIC scores. |
ClusterMethod |
Can be TRUE, FALSE, or 'both'. If it is set to 'both', the function computes networks with and without clustering constraints, and pick common edges between the both. |
AddAnnotations |
Boolean variable indicating whether gene annotations must be added through biomaRt |
MartDataset |
Which mart dataset to use for querying gene annotations through biomaRt. See getMartDatasets() for some help. |
An object of class SIMoNeNet. See SIMoNeNet.default() for more details.
A precaution must be taken by choosing the parameters, and the expression data matrix dimensions. You can use pickSIMoNeParam() to help in the choice of parameters.
Chiquet, J. et al. SIMoNe Statistical Inference for MOdular NEtworks. Bioinforma. Oxf. Engl. 25, 417 (2009).
SIMoNeNet
, SIMoNeNet.default
, print.SIMoNeNet
, summary.SIMoNeNet
, export.SIMoNeNet
, FilterEdges.SIMoNeNet
, pickSIMoNeParam
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | # data(SpADataExpression)
# data(SpADEGenes)
# SpAData<-DEGeneExpr(t(SpADataExpression),SpADEGenes)
# NodesForSIMoNe<-rownames(SpADEGenes)[1:17]
# GaussianSpAData<-DEGeneExpr(t(SpADataExpression[NodesForSIMoNe,]),SpADEGenes[NodesForSIMoNe,])
# pickSIMoNeParam(GaussianSpAData)
# GlobalSIMoNeNet<-getSIMoNeNet(GaussianSpAData)
# GlobalSIMoNeNet<-FilterEdges(GlobalSIMoNeNet,0.4)
# print(GlobalSIMoNeNet,5)
# summary(GlobalSIMoNeNet)
# plot(GlobalSIMoNeNet)
# export(GlobalSIMoNeNet,"GlobalSIMoNeNet",T)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.