R/earsC.R

Defines functions earsC

Documented in earsC

#         \|||/
#         (o o)
# ,~~~ooO~~(_)~~~~~~~~~,
# |        EARS        |
# |   surveillance     |
# |       methods      |
# |   C1, C2 and C3    |
# '~~~~~~~~~~~~~~ooO~~~'
#        |__|__|
#         || ||
#        ooO Ooo


######################################################################
# Implementation of the EARS surveillance methods.
######################################################################
# DESCRIPTION
######################################################################
# Given a time series of disease counts per month/week/day
# this function determines whether there was an outbreak at given time points:
# it deduces for each time point an expected value from past values,
# it defines an upperbound based on this value and on the variability
# of past values
# and then it compares the observed value with the upperbound.
# If the observed value is greater than the upperbound
# then an alert is flagged.
# Three methods are implemented.
# They do not use the same amount of past data
# and are expected to have different specificity and sensibility
# from C1 to C3
# the amount of past data used increases,
# so does the sensibility
# but the specificity decreases.
######################################################################
# PARAMETERS
######################################################################
#   range : range of timepoints over which the function will look for
# outbreaks.
#   method : which of the three EARS methods C1, C2 and C3 should be used.
#
######################################################################
# INPUT
######################################################################
# A R object of class sts
######################################################################
# OUTPUT
######################################################################
# The same R object of class sts with slot alarm and upperbound filled
# by the function
######################################################################

earsC <- function(sts, control = list(range = NULL, method = "C1",
                                      baseline = 7, minSigma = 0,
                                      alpha = 0.001)) {

######################################################################
  #Handle I/O
  ######################################################################
  #If list elements are empty fill them!
  if (is.null(control[["baseline", exact = TRUE]])) {
    control$baseline <- 7
  }

  if (is.null(control[["minSigma", exact = TRUE]])) {
    control$minSigma <- 0
  }
  baseline <- control$baseline
  minSigma <- control$minSigma

  if(minSigma < 0) {
    stop("The minimum sigma parameter (minSigma) needs to be positive")
  }
  if (baseline < 3) {
    stop("Minimum baseline to use is 3.")
  }

  # Method
  if (is.null(control[["method", exact = TRUE]])) {
    control$method <- "C1"
  }

  # Extracting the method
  method <- match.arg( control$method, c("C1","C2","C3"),several.ok=FALSE)

  # Range
  # By default it will take all possible weeks
  # which is not the same depending on the method
  if (is.null(control[["range",exact=TRUE]])) {
    if (method == "C1"){
      control$range <- seq(from=baseline+1, to=dim(sts@observed)[1],by=1)
    }
    if (method == "C2"){
      control$range <- seq(from=baseline+3, to=dim(sts@observed)[1],by=1)
    }
    if (method == "C3"){
      control$range <- seq(from=baseline+5, to=dim(sts@observed)[1],by=1)
    }
  }

  # zAlpha
  if (is.null(control[["alpha",exact=TRUE]])) {
    # C1 and C2: Risk of 1st type error of 10-3
    # This corresponds to an Z(1-zAlpha) of about 3
    if (method %in% c("C1","C2")) {
      control$alpha = 0.001
  }
    # C3: Risk of 1st type error of 0.025
    # This corresponds to an Z(1-zAlpha) of about 2
    if (method=="C3") {
      control$alpha = 0.025
    }
  }

  # Calculating the threshold zAlpha
  zAlpha <- qnorm((1-control$alpha))


  #Deduce necessary amount of data from method
  maxLag <- switch(method, C1 = baseline, C2 = baseline+2, C3 = baseline+4)

  # Order range in case it was not given in the right order
  control$range = sort(control$range)

  ######################################################################
  #Loop over all columns in the sts object
  #Call the right EARS function depending on the method chosen (1, 2 or 3)
  #####################################################################
   for (j in 1:ncol(sts)) {

     # check if the vector observed includes all necessary data: maxLag values.
     if((control$range[1] - maxLag) < 1) {
       stop("The vector of observed is too short!")
     }

     ######################################################################
     # Method C1 or C2
     ######################################################################
     if(method == "C1"){
       # construct the matrix for calculations
       ndx <- as.vector(outer(control$range,
                              baseline:1, FUN = "-"))
       refVals <- matrix(observed(sts)[,j][ndx], ncol = baseline)

       sts@upperbound[control$range, j] <- apply(refVals,1, mean) +
         zAlpha * pmax(apply(refVals, 1, sd), minSigma)
     }

     if (method == "C2") {
      # construct the matrix for calculations
       ndx <- as.vector(outer(control$range,
                              (baseline + 2):3, FUN = "-"))
       refVals <- matrix(observed(sts)[,j][ndx], ncol = baseline)

       sts@upperbound[control$range, j] <- apply(refVals,1, mean) +
         zAlpha * pmax(apply(refVals, 1, sd), minSigma)
     }

     if (method == "C3") {
       # refVals <- NULL
       rangeC2 = ((min(control$range) - 2):max(control$range))
       ##HB replacing loop:
       ndx <- as.vector(outer(rangeC2, (baseline + 2):3, FUN = "-"))
       refVals <- matrix(observed(sts)[,j][ndx], ncol = baseline)

       ##HB using argument 'minSigma' to avoid dividing by zero, huge zscores:
       C2 <- (observed(sts)[rangeC2, j] -
                apply(refVals, 1, mean))/
         pmax(apply(refVals, 1, sd), minSigma)

       partUpperboundLag2 <- pmax(rep(0, length.out = length(C2) - 2),
                                  C2[1:(length(C2) - 2)] - 1)

       partUpperboundLag1 <- pmax(rep(0, length.out = length(C2) - 2),
                                  C2[2:(length(C2) - 1)] - 1)
       ##HB using argument 'minSigma' to avoid alerting threshold that is zero or too small
       sts@upperbound[control$range, j] <- observed(sts)[control$range, j] +
         pmax(apply(as.matrix(refVals[3:length(C2), ]),1, sd),minSigma) *
         (zAlpha - (partUpperboundLag2 + partUpperboundLag1))
       sts@upperbound[control$range, j] = pmax(rep(0, length(control$range)),
                                               sts@upperbound[control$range, j])
     }
   }

  #Copy administrative information
  control$name <- paste("EARS_", method, sep = "")
  control$data <- paste(deparse(substitute(sts)))
  sts@control <- control
  sts@alarm[control$range, ] <- matrix(observed(sts)[control$range, ] > upperbound(sts)[control$range, ])
  return(sts[control$range, ])
}

Try the surveillance package in your browser

Any scripts or data that you put into this service are public.

surveillance documentation built on July 20, 2022, 1:06 a.m.