#########################################################################################
###### Functions to integrate omics data using GLMs ######
#########################################################################################
## By Sonia, Maider & Monica
## 07-July-2016
## Last modified: October 2023
options(stringsAsFactors = FALSE)
library(ltm)
#' Generalized Linear Models
#'
#'\code{GetGLM} fits a regression model for all the genes in the data set to identify
#' the experimental variables and potential regulators that show a significant effect on
#' the expression of each gene.
#'
#' @param GeneExpression Data frame containing gene expression data with genes in rows and
#' experimental samples in columns. Row names must be the gene IDs.
#' @param data.omics List where each element corresponds to a different omic data type to be considered (miRNAs,
#' transcription factors, methylation, etc.). The names of the list will represent the omics, and each element in
#' the list should be a data matrix with omic regulators in rows and samples in columns.
#' @param associations List where each element corresponds to a different omic data type (miRNAs,
#' transcription factors, methylation, etc.). The names of the list will represent the omics. Each element in
#' the list should be a data frame with 2 columns (optionally 3), describing the potential interactions between genes
#' and regulators for that omic. First column must contain the genes (or features in
#' GeneExpression object), second column must contain the regulators, and an optional third column can
#' be added to describe the type of interaction (e.g., for methylation, if a CpG site is located in
#' the promoter region of the gene, in the first exon, etc.). If the user lacks prior knowledge of the potential regulators, they can set the parameter to NULL.
#' In this case, all regulators in \code{\link{data.omics}} will be treated as potential regulators for all genes. In this case, for computational efficiency, it is recommended to use pls2 \code{\link{method}}.
#' Additionally, if the users have prior knowledge for certain omics and want to set other omics to NULL, they can do so.
#' @param edesign Data frame describing the experimental design. Rows must be the samples (columns
#' in \code{\link{GeneExpression}}) and columns must be the experimental variables to be included in the model (e.g. treatment, etc.).
#' @param clinic Data.frame with all clinical variables to consider,with samples in rows and variables in columns.
#' @param clinic.type Vector which indicates the type of data of variables introduced in \code{\link{clinic}}. The user should code as 0 numeric variables and as 1 categorical or binary variables.
#' By default is set to NULL. In this case, the data type will be predicted automatically. However, the user must verify the prediction and manually input the vector if incorrect.
#' @param center By default TRUE. It determines whether centering is applied to \code{\link{data.omics}}.
#' @param scale By default TRUE. It determines whether scaling is applied to \code{\link{data.omics}}.
#' @param epsilon Convergence threshold for coordinate descent algorithm in elasticnet. Default value, 1e-5.
#' @param alfa Significance level for variable selection in pls1and pls2 \code{\link{method}}. By default, 0.05.
#' @param family Error distribution and link function to be used in the model when \code{\link{method}} glm. By default, gaussian().
#' @param elasticnet ElasticNet mixing parameter. There are three options:
#' \itemize{
#' \item NULL : The parameter is selected from a grid of values ranging from 0 to 1 with 0.1 increments. The chosen value optimizes the mean cross-validated error when optimizing the lambda values.
#' \item A number between 0 and 1 : ElasticNet is applied with this number being the combination between Ridge and Lasso penalization (elasticnet=0 is the ridge penalty, elasticnet=1 is the lasso penalty).
#' \item A vector with the mixing parameters to try. The one that optimizes the mean cross-validated error when optimizing the lambda values will be used.
#' }
#' #' By default, NULL.
#' @param interactions.reg If TRUE, the model includes interactions between regulators and experimental variables. By default, TRUE.
#' @param min.variation For numerical regulators, it specifies the minimum change required across conditions to retain the regulator in
#' the regression models. In the case of binary regulators, if the proportion of the most common value is equal to or inferior this value,
#' the regulator is considered to have low variation and will be excluded from the regression models. The user has the option to set a single
#' value to apply the same filter to all omics, provide a vector of the same length as omics if they want to specify different levels for each omics,
#' or use 'NA' when they want to apply a minimum variation filter but are uncertain about the threshold. By default, 0.
#' @param col.filter Type of correlation coefficients to use when applying the multicollinearity filter when glm \code{\link{method}} is used.
#' \itemize{
#' \item cor: Computes the correlation between omics. Pearson correlation between numeric variables, phi coefficient between numeric and binary and biserial correlation between binary variables.
#' \item pcor : Computes the partial correlation.
#' }
#' @param correlation Value to determine the presence of collinearity between two regulators when using the glm \code{\link{method}}. By default, 0.7.
#' @param scaletype Type of scaling to be applied. Three options:
#' \itemize{
#' \item auto : Applies the autoscaling.
#' \item pareto : Applies the pareto scaling. \deqn{\frac{X_k}{s_k \sqrt[4]{m_b}} }
#' \item block : Applies the block scaling. \deqn{ \frac{X_k}{s_k \sqrt{m_b}} }
#' }
#' considering m_b the number of variables of the block. By default, auto.
#' @return List containing the following elements:
#' \itemize{
#' \item ResultsPerGene : List with as many elements as genes in \code{\link{GeneExpression}}. For each gene, it includes information about gene values, considered variables, estimated coefficients,
#' detailed information about all regulators, and regulators identified as relevant (in glm scenario) or significant (in pls scenarios).
#' \item GlobalSummary : List with information about the fitted models, including model metrics, information about regulators, genes without models, regulators, master regulators and hub genes.
#' \item Arguments : List containing all the arguments used to generate the models.
#' }
#' @export
GetGLM = function(GeneExpression,
data.omics,
associations = NULL,
omic.type = 0,
edesign = NULL,
clinic = NULL,
clinic.type =NULL,
center = TRUE, scale = TRUE,
epsilon = 0.00001,
family = gaussian(),
elasticnet = NULL,
interactions.reg = TRUE,
min.variation = 0,
col.filter = 'cor',
correlation = 0.7,
scaletype = 'auto'){
# Converting matrix to data.frame
GeneExpression = as.data.frame(GeneExpression)
data.omics = lapply(data.omics, as.data.frame)
## Omic types
if (length(omic.type) == 1) omic.type = rep(omic.type, length(data.omics))
names(omic.type) = names(data.omics)
# Creating vector for min.variation
if (length(min.variation) == 1) min.variation=rep(min.variation,length(data.omics))
names(min.variation)=names(data.omics)
if(!is.null(clinic)){
## Clinic types
if (length(clinic.type) == 1) {clinic.type = rep(clinic.type, ncol(clinic)); names(clinic.type) = colnames(clinic)}
##Before introducing variables in data.omics convert them to numeric type
## TO DO: Careful creates k-1 dummies. Is what we want?
catvar <- which(clinic.type == 1)
dummy_vars <- model.matrix(~ . , data = as.data.frame(clinic[,catvar ,drop=FALSE]))[,-1,drop=FALSE]
clinic <-clinic[, -catvar,drop=FALSE]
clinic <- cbind(clinic, dummy_vars)
data.omics = c(list(clinic = as.data.frame(t(clinic))),data.omics)
#Add in associations clinic to consider all the clinical variables in all genes
if(!is.null(associations)){associations = c(list(clinic = NULL),associations)}
#Add information to omic.type and min.variation even if it is not relevant
omic.type = c(0,omic.type)
names(omic.type)[1] = 'clinic'
min.variation = c(0,min.variation)
names(min.variation)[1] = 'clinic'
om= 2
}else{clinic.type=NULL; om =1}
# If associations is NULL create a list of associations NULL
if (is.null(associations)){
associations=vector('list',length(data.omics))
names(associations)=names(data.omics)
}
# Checking that the number of samples per omic is equal to number of samples for gene expression and the number of samples for edesign
for (i in 1:length(names(data.omics))){
if(!length(colnames(data.omics[[i]])) == length(colnames(GeneExpression)) ) {
stop("ERROR: Samples in data.omics must be the same as in GeneExpression and in edesign")
}
}
if(!is.null(edesign)){
if(!length(colnames(GeneExpression)) == length(rownames(edesign)) ) {
stop("ERROR: Samples in data.omics must be the same as in GeneExpression and in edesign")
}
}
## Checking that samples are in the same order in GeneExpressionDE, data.omics and edesign
orderproblem<-FALSE
if(is.null(edesign)){
nameproblem<-!all(sapply(data.omics, function(x) length(intersect(colnames(x),colnames(GeneExpression))==ncol(GeneExpression))))
if(nameproblem){
cat('Warning. GeneExpression and data.omics samples have not same names. We assume that they are ordered.\n')
}else{
orderproblem<-!all(sapply(data.omics, function(x) identical(colnames(x),colnames(GeneExpression))))
if(orderproblem){
data.omics<-lapply(data.omics, function(x) x[,colnames(GeneExpression)])
}
}
} else{
nameproblem<-!all(c(sapply(data.omics, function(x) length(intersect(colnames(x),colnames(GeneExpression)))==ncol(GeneExpression)), length(intersect(rownames(edesign),colnames(GeneExpression)))==ncol(GeneExpression)))
if(nameproblem){
cat('Warning. GeneExpression, edesign and data.omics samples have not same names. We assume that they are ordered.\n')
} else{
orderproblem<-!all(c(sapply(data.omics, function(x) identical(colnames(x),colnames(GeneExpression))), identical(colnames(GeneExpression),rownames(edesign))))
if(orderproblem){
data.omics<-lapply(data.omics, function(x) x[,colnames(GeneExpression)])
edesign<-edesign[colnames(GeneExpression), , drop=FALSE]
}
}
}
## Checking if there are regulators with "_R", "_P" or "_N" or with ":"
message = FALSE
for (i in 1:length(names(data.omics))){
problemas = c(rownames(data.omics[[i]])[grep("_R$", rownames(data.omics[[i]]))],
rownames(data.omics[[i]])[grep("_P$", rownames(data.omics[[i]]))],
rownames(data.omics[[i]])[grep("_N$", rownames(data.omics[[i]]))])
problema = c(grep(":", rownames(data.omics[[i]]), value = TRUE))
rownames(data.omics[[i]]) = gsub(':', '-', rownames(data.omics[[i]]))
rownames(data.omics[[i]]) = gsub('_R$', '-R', rownames(data.omics[[i]]))
rownames(data.omics[[i]]) = gsub('_P$', '-P', rownames(data.omics[[i]]))
rownames(data.omics[[i]]) = gsub('_N$', '-N', rownames(data.omics[[i]]))
#Change the name in the association matrix only if associations is not NULL
if(!is.null(associations[[i]])){
associations[[i]][[2]]=gsub(':', '-', associations[[i]][[2]])
associations[[i]][[2]] = gsub('_R$', '-R', associations[[i]][[2]])
associations[[i]][[2]] = gsub('_P$', '-P', associations[[i]][[2]])
associations[[i]][[2]] = gsub('_N$', '-N', associations[[i]][[2]])
}
if(length(problemas) > 0) {
cat("In",names(data.omics)[i], ',', problemas ,"regulators have names that may cause conflict with the algorithm by ending in _R, _P or _N", "\n")
cat("Endings changed with -R, -P or -N, respectively", "\n")
}
if(length(problema) > 0) {
cat("Some regulators in the omic", names(data.omics)[i], "have names with \":\" that could cause conflict, replaced with \"-\" ", "\n")
cat("Changed identifiers: ", problema, "\n")
}
}
##Checking that there are no replicates in the identifiers and changing identifiers in case of need
if(length(names(data.omics))>1){
for (i in 1:(length(names(data.omics))-1)){
for(j in (i+1):(length(names(data.omics)))){
repeated = intersect(rownames(data.omics[[i]]), rownames(data.omics[[j]]))
if(length(repeated) > 0) {
cat(names(data.omics)[i], "and", names(data.omics)[j], "omics have shared identifiers in regulators:", repeated, "\n")
#Change the name in the association matrix only if is not NULL
if(!is.null(associations[[i]])){
associations[[i]][[2]][associations[[i]][[2]]%in%repeated] = paste(names(data.omics)[i],'-', repeated, sep='')
}
if(!is.null(associations[[j]])){
associations[[j]][[2]][associations[[i]][[2]]%in%repeated] = paste(names(data.omics)[j],'-', repeated, sep='')
}
#Change the name in data.omics
rownames(data.omics[[i]])[rownames(data.omics[[i]])%in%repeated] = paste(names(data.omics)[i],'-', repeated,sep='')
rownames(data.omics[[j]])[rownames(data.omics[[j]])%in%repeated] = paste(names(data.omics)[j],'-', repeated,sep = '')
}
}
}
}
# Preparing family for ElasticNet variable selection
family2 = family$family
family2 = strsplit(family2, "(", fixed = TRUE)[[1]][1]
if (family2 %in% c("poisson", "quasipoisson", "Negative Binomial")) {
family2 = "poisson"
} else if (family2 %in% c("gaussian", "binomial")) {
family2 = family2
} else {
family2 = NULL
message(sprintf("Warning message:"))
message(sprintf("Elasticnet variable selection cannot be applied for family %s", family2))
}
#Checking there are not -Inf/Inf values and eliminate genes/regulator that contain them
infproblemgene<-is.infinite(rowSums(GeneExpression))
infproblemreg<-lapply(data.omics[om:length(data.omics)], function(x) is.infinite(rowSums(x)))
if(any(infproblemgene)){
genesInf<-rownames(GeneExpression)[infproblemgene]
GeneExpression<-GeneExpression[!infproblemgene,]
}else{genesInf <-NULL}
for (i in 1:(length(names(data.omics))-(om-1))){
if(any(infproblemreg[[i]])){
cat(rownames(data.omics[[i + (om-1)]])[infproblemreg[[i]]], 'regulators of the omic', names(data.omics)[i +(om-1)] ,'have been deleted due to -Inf/Inf values. \n')
data.omics[[i + (om-1)]]<-data.omics[[i + (om-1)]][!infproblemreg[[i]],]
}
}
## Removing genes with NAs and keeping track
min.obs = ncol(GeneExpression)
genesNotNA = apply(GeneExpression, 1, function (x) sum(!is.na(x)))
genesNotNA = names(which(genesNotNA >= min.obs))
genesNA = setdiff(rownames(GeneExpression), genesNotNA)
GeneExpression = GeneExpression[genesNotNA,]
## Removing genes with no regulators only if associations does not have an associations = NULL in any omic
genesNOreg = NULL
genesNOreg = lapply(associations, function(x) if(!is.null(x)) {setdiff( rownames(GeneExpression),x[,1])})
genesNOreg = Reduce(intersect, genesNOreg)
GeneExpression = GeneExpression[!(rownames(GeneExpression) %in% genesNOreg),]
if (length(genesNOreg) > 0){
cat(length(genesNOreg), "genes had no initial regulators. Models will be computed for", length(rownames(GeneExpression)), 'genes.\n')
}
## Removing constant genes
constantGenes = apply(GeneExpression, 1, sd, na.rm = TRUE)
notConstant = names(constantGenes)[constantGenes > 0]
constantGenes = names(constantGenes)[constantGenes == 0]
GeneExpression = GeneExpression[notConstant,]
Allgenes=rownames(GeneExpression)
nGenes = length(Allgenes)
# Experimental groups
if (is.null(edesign)) {
cat("No experimental covariates were provided.\n")
Group = 1:ncol(GeneExpression)
names(Group) = colnames(GeneExpression)
des.mat = NULL
} else {
Group = apply(edesign, 1, paste, collapse = "_")
des.mat = model.matrix(~Group)[, -1, drop = FALSE]
rownames(des.mat) = colnames(GeneExpression)
#Change the name to avoid conflicts with RegulationPerCondition
colnames(des.mat) = sub('Group','Group_',colnames(des.mat))
}
## Remove regulators with NA
cat("Removing regulators with missing values...\n")
myregNA = lapply(data.omics, rownames)
data.omics = lapply(data.omics, na.omit)
myregNA = lapply(1:length(data.omics), function (i) setdiff(myregNA[[i]], rownames(data.omics[[i]])))
names(myregNA)=names(data.omics)
cat("Number of regulators with missing values:\n")
print(sapply(myregNA, length))
cat("\n")
## Remove regulators with Low Variability
cat("Removing regulators with low variation...\n")
tmp = LowVariationRegu(min.variation, data.omics, Group, associations, Allgenes, omic.type, clinic.type)
data.omics = tmp[["data.omics"]]
associations = tmp[["associations"]]
myregLV = tmp[["myregLV"]]
rm("tmp"); gc()
if(all(sapply(data.omics, function(x)nrow(x)==0))) stop("ERROR: No regulators left after LowVariation filter. Consider being less restrictive.")
### Results objects
## Global summary for all genes
GlobalSummary = vector("list", length = 6)
names(GlobalSummary) = c("GoodnessOfFit", "ReguPerGene", "GenesNOmodel", "GenesNOregulators", "GlobalRegulators", "HubGenes")
GlobalSummary$GenesNOmodel = NULL
if (length(genesNA) > 0) {
GlobalSummary$GenesNOmodel = data.frame("gene" = genesNA,
"problem" = rep("Too many missing values", length(genesNA)))
}
if (length(constantGenes) > 0) {
GlobalSummary$GenesNOmodel = rbind(GlobalSummary$GenesNOmodel,
data.frame("gene" = constantGenes,
"problem" = rep("Response values are constant", length(constantGenes))))
}
if (length(genesInf) > 0){
GlobalSummary$GenesNOmodel = rbind(GlobalSummary$GenesNOmodel,
data.frame("gene" = genesInf,
"problem" = rep("-Inf/Inf values", length(genesInf))))
}
GlobalSummary$GenesNOregulators = NULL
if (length(genesNOreg) > 0){
GlobalSummary$GenesNoregulators = data.frame("gene" = genesNOreg, "problem" = rep("Gene had no initial regulators", length(genesNOreg)))
}
GlobalSummary$GoodnessOfFit = matrix(NA, ncol = 4, nrow = nGenes)
rownames(GlobalSummary$GoodnessOfFit) = Allgenes
colnames(GlobalSummary$GoodnessOfFit) = c("Rsquared", "RMSE","CV(RMSE)", "relReg")
GlobalSummary$ReguPerGene = matrix(0, ncol = 3*length(data.omics), nrow = nGenes)
rownames(GlobalSummary$ReguPerGene) = Allgenes
colnames(GlobalSummary$ReguPerGene) = c(paste(names(data.omics), "Ini", sep = "-"),
paste(names(data.omics), "Mod", sep = "-"),
paste(names(data.omics), "Rel", sep = "-"))
## Specific results for each gene
ResultsPerGene=vector("list", length=length(Allgenes))
names(ResultsPerGene) = Allgenes
### Computing model for each gene
cat("Checking multicollinearity, selecting predictors and fitting model for ...\n")
pap = c(1, 1:round(nGenes/100) * 100, nGenes)
for (i in 1:nGenes) {
gene=Allgenes[i]
ResultsPerGene[[i]] = vector("list", length = 5)
names(ResultsPerGene[[i]]) = c("Y", "X", "coefficients", "allRegulators", "relevantRegulators")
if (is.element(i, pap)) cat(paste("Fitting model for gene", i, "out of", nGenes, "\n"))
RetRegul = GetAllReg(gene=gene, associations=associations, data.omics = data.omics)
RetRegul.gene = RetRegul$Results ## RetRegul$TableGene: nr reg per omic
## Some of these reg will be removed, because they are not in data.omics
# RetRegul.gene--> gene/regulator/omic/area
RetRegul.gene=RetRegul.gene[RetRegul.gene[,"regulator"]!= "No-regulator", ,drop=FALSE] ## Remove rows with no-regulators
### NO INITIAL REGULATORS
if(length(RetRegul.gene)==0){ ## En el caso de que no hayan INICIALMENTE reguladores -> Calcular modelo con variables experimentales o clinicas.
if (is.null(edesign)) {
ResultsPerGene[[i]]$X = NULL
ResultsPerGene[[i]]$relevantRegulators = NULL
ResultsPerGene[[i]]$allRegulators = NULL
isModel = NULL
} else {
des.mat2 = cbind(t(GeneExpression[gene,]), des.mat)
colnames(des.mat2)[1] = "response"
des.mat2 = na.omit(des.mat2)
# Removing predictors with constant values
sdNo0 = apply(des.mat2, 2, sd)
sdNo0 = names(sdNo0)[sdNo0 > 0]
des.mat2 = des.mat2[,sdNo0]
isModel =NULL
ResultsPerGene[[i]]$X = des.mat2[,-1, drop = FALSE]
ResultsPerGene[[i]]$relevantRegulators = NULL
ResultsPerGene[[i]]$allRegulators = NULL
}
# GlobalSummary$ReguPerGene # this is initially set to 0 so no need to modify it
### WITH INITIAL REGULATORS
}
else { ## There are regulators for this gene at the beginning
ResultsPerGene[[i]]$allRegulators = data.frame(RetRegul.gene, rep("Model",nrow(RetRegul.gene)), stringsAsFactors = FALSE)
colnames(ResultsPerGene[[i]]$allRegulators) = c("gene","regulator","omic","area","filter")
GlobalSummary$ReguPerGene[gene, grep("-Ini", colnames(GlobalSummary$ReguPerGene))] = as.numeric(RetRegul$TableGene[-1])
# the rest of columns remain 0
## Identify which regulators where removed because of missing values or low variation
res = RemovedRegulators(RetRegul.gene = ResultsPerGene[[i]]$allRegulators,
myregLV=myregLV, myregNA=myregNA, data.omics=data.omics)
if(length(res$RegulatorMatrix)==0){ ## No regulators left after the filtering to compute the model
if (is.null(edesign)) {
ResultsPerGene[[i]]$X = NULL
ResultsPerGene[[i]]$relevantRegulators = NULL
ResultsPerGene[[i]]$allRegulators = res$SummaryPerGene
isModel = NULL
} else {
des.mat2 = cbind(t(GeneExpression[gene,]), des.mat)
colnames(des.mat2)[1] = "response"
des.mat2 = na.omit(des.mat2)
# Removing predictors with constant values
sdNo0 = apply(des.mat2, 2, sd)
sdNo0 = names(sdNo0)[sdNo0 > 0]
des.mat2 = des.mat2[,sdNo0]
isModel = NULL
GlobalSummary$GenesNOmodel = rbind(GlobalSummary$GenesNOmodel,
data.frame("gene" = gene,
"problem" = 'No regulators left after NA/LowVar filtering'))
ResultsPerGene[[i]]$X = des.mat2[,-1, drop = FALSE]
ResultsPerGene[[i]]$relevantRegulators = NULL
ResultsPerGene[[i]]$allRegulators = res$SummaryPerGene
}
}
else { ## Regulators for the model!!
## Apply multicollinearity filter only if there is more than one regulator for a gene
if (ncol(res$RegulatorMatrix)>1){
if(col.filter=='cor'){
res = CollinearityFilter1(data = res$RegulatorMatrix, reg.table = res$SummaryPerGene,
correlation = correlation, omic.type = omic.type, scale = scale, center = center)
}
if(col.filter=='pcor'){
res = CollinearityFilter2(data = res$RegulatorMatrix, reg.table = res$SummaryPerGene,
correlation = correlation, omic.type = omic.type, epsilon = epsilon , scale = scale, center = center)
}
}
if(is.null(res)){
des.mat2 = cbind(t(GeneExpression[gene,]), des.mat)
colnames(des.mat2)[1] = "response"
colnames(des.mat2) = gsub("\`", "", colnames(des.mat2))
GlobalSummary$GenesNOmodel = rbind(GlobalSummary$GenesNOmodel,
data.frame("gene" = gene,
"problem" = 'Problem with Partial Correlation calculation'))
isModel =NULL
} else{
ResultsPerGene[[i]]$allRegulators = res$SummaryPerGene
## Scaling predictors for ElasticNet only in case they were not already scaled
des.mat2EN = RegulatorsInteractions(interactions.reg, reguValues = res$RegulatorMatrix,
des.mat, GeneExpression, gene)
# Removing observations with missing values
des.mat2EN = na.omit(des.mat2EN)
#Scale the variables, indispensable for elasticnet application
des.mat2EN = data.frame(des.mat2EN[,1,drop=FALSE], scale(des.mat2EN[,-1,drop=FALSE],scale=scale,center=center),check.names = FALSE)
##Scale if needed to block scaling or pareto scaling
if (scaletype!='auto'){
## Make the groups of omics
regupero = lapply(unique(res$SummaryPerGene[,'omic']), function(x) rownames(res$SummaryPerGene)[res$SummaryPerGene[,'omic'] == x & res$SummaryPerGene[,'filter'] == "Model"])
names(regupero) = unique(res$SummaryPerGene[,'omic'])
#Remove empty omics
regupero = regupero[sapply(regupero, function(x) length(x) > 0)]
#It does not work in case of really huge amount of data
regupero1 = try(suppressWarnings( lapply(regupero, function(x) colnames(des.mat2EN[,grep(paste(x, collapse = "|"), colnames(des.mat2EN)),drop=FALSE]))),silent = TRUE)
if(class(regupero1)=='try-error'){
#Add the ones related to the interactions
regupero = filter_columns_by_regexp(regupero, des.mat2EN,res)
}else{regupero = regupero1}
res$RegulatorMatrix = Scaling.type(des.mat2EN[,-1,drop=FALSE], regupero, scaletype)
#Use them jointly
des.mat2EN = data.frame(des.mat2EN[,1,drop=FALSE], scale(des.mat,scale=scale,center=center), res$RegulatorMatrix,check.names = FALSE)
rm(regupero);gc()
}
### Variable selection --> Elasticnet
tmp = ElasticNet(family2, des.mat2EN, epsilon, elasticnet)
regulatorcoef = tmp[['coefficients']]
isModel = tmp[['isModel']]
m = tmp[['m']]
des.mat2 = as.data.frame(des.mat2EN[,colnames(tmp[["des.mat2"]]),drop = FALSE])
ResultsPerGene[[i]]$X = des.mat2EN[,-1, drop = FALSE]
rm(des.mat2EN); gc()
}
if (ncol(des.mat2) == 1 || is.null(isModel)) {
## Extracting significant regulators
ResultsPerGene[[i]]$relevantRegulators = NULL
ResultsPerGene[[i]]$allRegulators = data.frame(ResultsPerGene[[i]]$allRegulators, "Rel" = 0, stringsAsFactors = FALSE)
## Counting original regulators in the model per omic
contando = ResultsPerGene[[i]]$allRegulators[which(ResultsPerGene[[i]]$allRegulators[,"filter"] == "Model"),]
contando = table(contando[,"omic"])
contando = as.numeric(contando[names(data.omics)])
contando[is.na(contando)] = 0
GlobalSummary$ReguPerGene[gene, grep("-Mod", colnames(GlobalSummary$ReguPerGene))] = contando
} else{
isModel = TRUE
mycoef = colnames(des.mat2[,-1,drop = FALSE])
myvariables = unlist(strsplit(mycoef, ":", fixed = TRUE))
mycondi = intersect(myvariables, colnames(des.mat))
myvariables = intersect(myvariables, rownames(ResultsPerGene[[i]]$allRegulators))
ResultsPerGene[[i]]$allRegulators = data.frame(ResultsPerGene[[i]]$allRegulators, "Rel" = 0, stringsAsFactors = FALSE)
ResultsPerGene[[i]]$allRegulators[myvariables, "Rel"] = 1
ResultsPerGene[[i]]$coefficients = regulatorcoef
#ResultsPerGene[[i]]$coefficients = regulatorcoef[myvariables,, drop =FALSE]
colnames(ResultsPerGene[[i]]$coefficients) = c('coefficient')
## A las variables significativas le quito "_R", solo quedara omica_mc"num". Luego creo un objeto que contenga a mi tabla de "allRegulators"
## para poder modificar los nombres de la misma forma.
myvariables = sub("_R", "", myvariables)
ResultsPerGene[[i]]$relevantRegulators = myvariables # significant regulators including "new" correlated regulators without _R
contando = ResultsPerGene[[i]]$allRegulators[which(ResultsPerGene[[i]]$allRegulators[,"filter"] == "Model"),]
contando = table(contando[,"omic"])
contando = as.numeric(contando[names(data.omics)])
contando[is.na(contando)] = 0
GlobalSummary$ReguPerGene[gene, grep("-Mod", colnames(GlobalSummary$ReguPerGene))] = contando
mytable = ResultsPerGene[[i]]$allRegulators
mytable[,"filter"] = sub("_P", "", mytable[,"filter"])
mytable[,"filter"] = sub("_N", "", mytable[,"filter"])
mytable[,"filter"] = sub("_R", "", mytable[,"filter"])
collin.regulators = intersect(myvariables, mytable[,"filter"])
if (length(collin.regulators) > 0) { # there were correlated regulators
original.regulators = mytable[mytable[,"filter"] %in% collin.regulators, "regulator"]
ResultsPerGene[[i]]$allRegulators[original.regulators, "Rel"] = 1
ResultsPerGene[[i]]$relevantRegulators = c(ResultsPerGene[[i]]$relevantRegulators, as.character(original.regulators))
ResultsPerGene[[i]]$relevantRegulators = setdiff(ResultsPerGene[[i]]$relevantRegulators, collin.regulators)
## Counting original regulators in the model per omic
contando = ResultsPerGene[[i]]$allRegulators
quitar = which(contando[,"filter"] == "MissingValue")
if (length(quitar) > 0) contando = contando[-quitar,]
quitar = which(contando[,"filter"] == "LowVariation")
if (length(quitar) > 0) contando = contando[-quitar,]
contando = contando[-grep("_R", rownames(contando)),]
} else {
contando = ResultsPerGene[[i]]$allRegulators[which(ResultsPerGene[[i]]$allRegulators[,"filter"] == "Model"),]
}
contando = table(contando[,"omic"])
contando = as.numeric(contando[names(data.omics)])
contando[is.na(contando)] = 0
GlobalSummary$ReguPerGene[gene, grep("-Mod", colnames(GlobalSummary$ReguPerGene))] = contando
## TO DO: Corregir GblobalSummary$ReguPerGene
## Counting significant regulators per omic
if (length(ResultsPerGene[[i]]$relevantRegulators) > 0) {
contando = ResultsPerGene[[i]]$allRegulators[ResultsPerGene[[i]]$relevantRegulators,, drop=FALSE]
contando = table(contando[,"omic"])
contando = as.numeric(contando[names(data.omics)])
contando[is.na(contando)] = 0
GlobalSummary$ReguPerGene[gene, grep("-Rel", colnames(GlobalSummary$ReguPerGene))] = contando
}
}
}
} ## Close "else" --> None regulators from begining
if (is.null(isModel)) {
ResultsPerGene[[i]]$Y = GeneExpression[i,]
ResultsPerGene[[i]]$coefficients = NULL
GlobalSummary$GoodnessOfFit = GlobalSummary$GoodnessOfFit[rownames(GlobalSummary$GoodnessOfFit) != gene,,drop=FALSE]
} else {
ResultsPerGene[[i]]$Y = data.frame("y" = des.mat2[,1], "fitted.y" = tmp[['fitted.values']],
"residuals" = des.mat2[,1] - tmp[['fitted.values']], check.names = FALSE)
colnames(ResultsPerGene[[i]]$Y) <- c("y", "fitted.y", "residuals")
GlobalSummary$GoodnessOfFit[gene,] = c(m$R.squared, m$RMSE, m$cvRMSE,length(ResultsPerGene[[gene]]$relevantRegulators))
}
} ## At this point the loop for all genes is finished
# Remove from GoodnessOfFit genes with no significant regulators
genesNosig = names(which(GlobalSummary$GoodnessOfFit[,4]==0))
genessig = setdiff(rownames(GlobalSummary$GoodnessOfFit), genesNosig)
GlobalSummary$GoodnessOfFit = GlobalSummary$GoodnessOfFit[genessig,,drop=FALSE]
#Calculate GlobalRegulators
m_rel_reg<-lapply(ResultsPerGene, function(x) x$relevantRegulators)
m_rel_reg <- unlist(m_rel_reg)
mrel_vector <- table(m_rel_reg)
#Calculate third quantile
q3<-quantile(mrel_vector,0.75)
if(length(mrel_vector[mrel_vector>q3])<10){
GlobalSummary$GlobalRegulators = intersect(names(mrel_vector[rev(tail(order(mrel_vector),10))]), names(mrel_vector[mrel_vector>10]) )
} else{
GlobalSummary$GlobalRegulators = intersect(names(mrel_vector[mrel_vector>q3]), names(mrel_vector[mrel_vector>10]) )
}
#Calculate HubGenes
relevant_regulators<-GlobalSummary$ReguPerGene[,c(grep('-Rel$',colnames(GlobalSummary$ReguPerGene)))]
s_rel_reg<-apply(relevant_regulators, 1, sum)
#Calculate third quantile
q3<-quantile(s_rel_reg,0.75)
if(length(s_rel_reg[s_rel_reg>q3])<10){
GlobalSummary$HubGenes = intersect(names(s_rel_reg[rev(tail(order(s_rel_reg),10))]), names(s_rel_reg[s_rel_reg>10]) )
} else{
GlobalSummary$HubGenes = intersect(names(s_rel_reg[s_rel_reg>q3]), names(s_rel_reg[s_rel_reg>10]))
}
myarguments = list(edesign = edesign, finaldesign = des.mat, groups = Group, family = family,
center = center, scale = scale, elasticnet = tmp[['elasticnet']],
min.variation = min.variation, correlation = correlation,
epsilon = epsilon, associations = associations,
GeneExpression = GeneExpression, dataOmics = data.omics, omic.type = omic.type,
clinic = clinic, clinic.type=clinic.type,method ='glm')
result <- list("ResultsPerGene" = ResultsPerGene, "GlobalSummary" = GlobalSummary, "arguments" = myarguments)
class(result) <- "MORE"
return(result)
}
# Multi-collinearity filter ------------------------------------------------------
## Multicollinearity filter taking into account correlation of different omics. Method 'COR'
correlations<- function(v, data, reg.table, omic.type){
omic1 = omic.type[[reg.table[v[1], 'omic']]]
omic2 = omic.type[[reg.table[v[2], 'omic']]]
if(omic1 == 0 & omic2 == 0){
correlation = cor(data[, v[1]], data[, v[2]])
} else if(omic1 == 0 & omic2 == 1){
correlation = ltm::biserial.cor(data[, v[1]], data[, v[2]])
} else if(omic1 == 1 & omic2 == 0){
correlation = ltm::biserial.cor(data[, v[2]], data[, v[1]])
} else{
contingency.table = table(data[,v[1]], data[,v[2]])
correlation = psych::phi(contingency.table)
}
return(correlation)
}
CollinearityFilter1 = function(data, reg.table, correlation = 0.8, omic.type,scale,center) {
## data = Regulator data matrix for all omics where missing values and regulators with low variation have been filtered out
# (regulators must be in columns)
## reg.table = Table with "gene", "regulator", "omic", "area", filter" where omics with no regulators have been removed
row.names(reg.table) = reg.table[,"regulator"]
#Scale the data only for correlation calculation
data2 = scale(data,scale,center)
myreg = as.character(reg.table[which(reg.table[,"filter"] == "Model"),"regulator"])
mycorrelations = data.frame(t(combn(myreg,2)),combn(myreg, 2, function(x) correlations(x, data2, reg.table, omic.type)))
## Compute the correlation between all regulators (even if they are of different omics)
mycor = mycorrelations[abs(mycorrelations[,3]) >= correlation,]
if (nrow(mycor) == 1) { ### only 2 regulators are correlated in this omic
correlacionados = unlist(mycor[,1:2])
regulators = colnames(data)
keep = sample(correlacionados, 1) # Regulador al azar de la pareja
## Lo siguiente elimina el no representante de la matriz de reguladores. Al regulador escogido como representante,
## le cambia el nombre por "mc_1_R" para que despues pase la seleccion de variables y asi, en reg.table se conserva
## la info de que fue escogido como representante.
remove = setdiff(correlacionados, keep)
regulators = setdiff(regulators, remove)
data = as.matrix(data[ ,regulators])
colnames(data) = regulators
index.reg = which(colnames(data) == as.character(keep))
colnames(data)[index.reg] = paste(reg.table[keep[[1]], 'omic'], paste("mc", 1, sep = ""), "R", sep = "_")
# Cambio en reg.table. Asignacion de los nombres segun sea representante,
# correlacion positiva o negativa. Creacion de una nueva fila con el representante
# para la seleccion de variables y asi, no perder la info del representante.
reg.table = rbind(reg.table, reg.table[keep,])
reg.table[nrow(reg.table), "regulator"] = paste(reg.table[keep[[1]], 'omic'], paste("mc", 1, sep = ""), "R", sep = "_")
reg.table[keep, "filter"] = paste(reg.table[keep[[1]], 'omic'], paste("mc", 1, sep = ""), "R", sep = "_")
rownames(reg.table) = reg.table[ ,"regulator"]
if(mycor[,3] > 0){
reg.table[remove, "filter"] = paste(reg.table[keep[[1]], 'omic'], paste("mc", 1, sep = ""), "P", sep = "_")
} else{
reg.table[remove, "filter"] = paste(reg.table[keep[[1]], 'omic'], paste("mc", 1, sep = ""), "N", sep = "_")
}
}
if (nrow(mycor) >= 2) { ### more than 2 regulators might be correlated in this omic
mygraph = igraph::graph_from_data_frame(mycor, directed=F)
mycomponents = igraph::components(mygraph)
mygraph$community<-mycomponents$membership ##save membership information
for (i in 1:mycomponents$no) {
#create the subgraphs of the clusters
mysubgraph = igraph::subgraph(mygraph,as.numeric(igraph::V(mygraph)[which(mygraph$community==i)]))
nedges = igraph::ecount(mysubgraph)
## see if it is a fully connected graph
if (nedges == ((mycomponents$csize[i]*(mycomponents$csize[i]-1))/2)){
correlacionados = names(mycomponents$membership[mycomponents$membership == i])
regulators = colnames(data)
## Take as representator the one with highest correlations, it case of tie, select it randomly
sums = sapply(correlacionados, function(x) sum(abs(mycor[which(apply(mycor[,c(1,2)]==c(x),1,any)),3])))
if(length(which(sums==max(sums)))>1){
keep = sample(names(which(sums==max(sums))),1)
} else {
keep = names(which(sums==max(sums)))
}
reg.remove = setdiff(correlacionados, keep) # correlated regulator to remove
regulators = setdiff(regulators, reg.remove) # all regulators to keep
data = as.matrix(data[ ,regulators])
colnames(data) = regulators
index.reg = which(colnames(data) == as.character(keep))
colnames(data)[index.reg] = paste(reg.table[keep[[1]], 'omic'], paste("mc", i, sep = ""), "R", sep = "_")
# Asignacion de nombre al representante y nueva fila para el filtro de
# seleccion de variables (asi no se pierde la info del representante).
reg.table = rbind(reg.table, reg.table[keep,])
reg.table[nrow(reg.table), "regulator"] = paste(reg.table[keep[[1]], 'omic'], paste("mc", i, sep = ""), "R", sep = "_")
reg.table[keep, "filter"] = paste(reg.table[keep[[1]], 'omic'], paste("mc", i, sep = ""), "R", sep = "_")
rownames(reg.table) = reg.table[ ,"regulator"]
# Matriz que recoge los reguladores correlacionados con el representante: actual.correlation. Asi se puede ver si la correlacion es
# positiva o negativa y asignar el nombre. Intente hacer merge(), expand.grid(), pero no daba las mismas combinaciones que combn(), por lo que
# vi necesario hacer un bucle para quedarme con aquellas parejas que interesan (representante - resto de reguladores).
actual.couple = data.frame(t(combn(correlacionados,2)), stringsAsFactors = FALSE)
colnames(actual.couple) = colnames(mycorrelations[,c(1,2)])
actual.correlation = NULL
for(k in 1:nrow(actual.couple)){
if (any(actual.couple[k,c(1,2)] == keep)){
actual.correlation = rbind(actual.correlation, actual.couple[k,])
}
}
actual.correlation = merge(actual.correlation[,c(1,2)],mycorrelations)
# Uso la matriz anterior para recorrer las correlaciones y segun sea positiva
# o negativa, asigno un nombre.
for(k in 1:nrow(actual.correlation)){
if(actual.correlation[k,3] > 0){
index = as.character(actual.correlation[k, which(with(actual.correlation, actual.correlation[k,c(1,2)] != keep))])
reg.table[index, "filter"] = paste(reg.table[keep[[1]], 'omic'], paste("mc", i, sep = ""), "P", sep = "_")
} else{
index = as.character(actual.correlation[k, which(with(actual.correlation, actual.correlation[k,c(1,2)] != keep))])
reg.table[index, "filter"] = paste(reg.table[keep[[1]], 'omic'], paste("mc", i, sep = ""), "N", sep = "_")
}
}
} else{
j=1
mycomponents2= mycomponents
#Opción 1: Tomar como representante el que más edges tenga y crear subgrafos separando a los que no crean conexión con el
##Repite the proccess till there are no connected edges in the subgraph
while(sum(mycomponents2$csize)!=mycomponents2$no){
## Take the regulator(s) with more edges
mynumedges=table(igraph::as_edgelist(mysubgraph))
maxcorrelationed = names(which(mynumedges==max(mynumedges)))
if(length(maxcorrelationed)>1){
#Compute the sums (in absolute value) of the correlations and take as a representator the biggest
sums = sapply(maxcorrelationed, function(x) sum(abs(mycor[which(apply( mycor[,c(1,2)]==c(x), 1, any)),3])))
if(length(which(sums==max(sums)))>1){
repre = sample(names(which(sums==max(sums))), 1)
} else{
repre = names(which(sums == max(sums)))
}
} else{
repre = maxcorrelationed
}
correlacionados = names(which(igraph::as_adj(mysubgraph)[,repre]>0))
regulators = colnames(data)
regulators = setdiff(regulators, correlacionados) # all regulators to keep
data = as.matrix(data[ ,regulators])
colnames(data) = regulators
index.reg = which(colnames(data) == as.character(repre))
colnames(data)[index.reg] = paste(reg.table[repre, 'omic'], paste("mc", i, sep = ""), j, "R", sep = "_")
# Asignacion de nombre al representante y nueva fila para el filtro de
# seleccion de variables (asi no se pierde la info del representante).
reg.table = rbind(reg.table, reg.table[repre,])
reg.table[nrow(reg.table), "regulator"] = paste(reg.table[repre, 'omic'], paste("mc", i, sep = ""),j, "R", sep = "_")
reg.table[repre, "filter"] = paste(reg.table[repre, 'omic'], paste("mc", i, sep = ""),j, "R", sep = "_")
rownames(reg.table) = reg.table[ ,"regulator"]
# Matriz que recoge los reguladores correlacionados con el representante: actual.correlation. Asi se puede ver si la correlacion es
# positiva o negativa y asignar el nombre. Intente hacer merge(), expand.grid(), pero no daba las mismas combinaciones que combn(), por lo que
# vi necesario hacer un bucle para quedarme con aquellas parejas que interesan (representante - resto de reguladores).
actual.correlation = NULL
for(k in 1:nrow(mycor)){
if (any(mycor[k,c(1,2)] == repre)){
actual.correlation = rbind(actual.correlation, mycor[k,])
}
}
# Uso la matriz anterior para recorrer las correlaciones y segun sea positiva
# o negativa, asigno un nombre.
for(k in 1:nrow(actual.correlation)){
if(actual.correlation[k,3] > 0){
index = as.character(actual.correlation[k, which(with(actual.correlation, actual.correlation[k,c(1,2)] != repre))])
reg.table[index, "filter"] = paste(reg.table[repre, 'omic'], paste("mc", i, sep = ""),j, "P", sep = "_")
} else{
index = as.character(actual.correlation[k, which(with(actual.correlation, actual.correlation[k,c(1,2)] != repre))])
reg.table[index, "filter"] = paste(reg.table[repre, 'omic'], paste("mc", i, sep = ""),j, "N", sep = "_")
}
}
mysubgraph<-igraph::delete_vertices(mysubgraph,correlacionados)
mycomponents2 = igraph::components(mysubgraph)
j=j+1
}
}
}
}
resultado = list(RegulatorMatrix = data, SummaryPerGene = reg.table)
rownames(resultado$SummaryPerGene) = resultado$SummaryPerGene[,"regulator"]
return(resultado)
}
## Multicollinearity filter: Partial Correlation full order
cor2pcor<-function(m,tol){
m1 = try(MASS::ginv(m, tol = tol),silent=TRUE)
if (class(m1)[1]=='try-error'){
return(matrix(NA, ncol = ncol(m),nrow=nrow(m)))
} else{
diag(m1) = diag(m1)
return(-cov2cor(m1))
}
}
partialcorrelation <- function(data,reg.table,myreg, omic.type,epsilon){
data<-as.matrix(data)
pairs<-combn(ncol(data),2)
cvx <- matrix(0,ncol = ncol(data),nrow=ncol(data))
for (i in 1:ncol(pairs)) {
cvx[pairs[,i][1],pairs[,i][2]] = correlations(pairs[,i], data, reg.table, omic.type)
cvx[pairs[,i][2],pairs[,i][1]] = cvx[pairs[,i][1],pairs[,i][2]]
}
diag(cvx)<-1
# partial correlation
correlation <- cor2pcor(cvx, epsilon)
colnames(correlation)<-colnames(data)
rownames(correlation)<-colnames(data)
correlation<-data.frame(t(combn(myreg,2)),combn(myreg, 2, function(x) correlation[x[1], x[2]]))
return(correlation)
}
CollinearityFilter2 = function(data, reg.table, correlation = 0.8, omic.type,epsilon,scale,center) {
## data = Regulator data matrix for all omics where missing values and regulators with low variation have been filtered out
# (regulators must be in columns)
## reg.table = Table with "gene", "regulator", "omic", "area", filter" where omics with no regulators have been removed
row.names(reg.table) = reg.table[,"regulator"]
#resultado = list(RegulatorMatrix = data, SummaryPerGene = reg.table)
myreg = as.character(reg.table[which(reg.table[,"filter"] == "Model"),"regulator"])
data<-data[,myreg]
#Scale only the data for correlation calculation
data2 = scale(data,scale,center)
mycorrelations = suppressWarnings(partialcorrelation(data2, reg.table,myreg, omic.type, epsilon))
if(any(is.na(mycorrelations[,3]))){
return(NULL)
}
## Compute the correlation between all regulators (even if they are of different omics)
mycor = mycorrelations[abs(mycorrelations[,3]) >= correlation,]
if (nrow(mycor) == 1) { ### only 2 regulators are correlated in this omic
correlacionados = unlist(mycor[,1:2])
regulators = colnames(data)
keep = sample(correlacionados, 1) # Regulador al azar de la pareja
## Lo siguiente elimina el no representante de la matriz de reguladores. Al regulador escogido como representante,
## le cambia el nombre por "mc_1_R" para que despues pase la seleccion de variables y asi, en reg.table se conserva
## la info de que fue escogido como representante.
remove = setdiff(correlacionados, keep)
regulators = setdiff(regulators, remove)
data = as.matrix(data[ ,regulators])
colnames(data) = regulators
index.reg = which(colnames(data) == as.character(keep))
colnames(data)[index.reg] = paste(reg.table[keep[[1]], 'omic'], paste("mc", 1, sep = ""), "R", sep = "_")
# Cambio en reg.table. Asignacion de los nombres segun sea representante,
# correlacion positiva o negativa. Creacion de una nueva fila con el representante
# para la seleccion de variables y asi, no perder la info del representante.
reg.table = rbind(reg.table, reg.table[keep,])
reg.table[nrow(reg.table), "regulator"] = paste(reg.table[keep[[1]], 'omic'], paste("mc", 1, sep = ""), "R", sep = "_")
reg.table[keep, "filter"] = paste(reg.table[keep[[1]], 'omic'], paste("mc", 1, sep = ""), "R", sep = "_")
rownames(reg.table) = reg.table[ ,"regulator"]
if(mycor[,3] > 0){
reg.table[remove, "filter"] = paste(reg.table[keep[[1]], 'omic'], paste("mc", 1, sep = ""), "P", sep = "_")
} else{
reg.table[remove, "filter"] = paste(reg.table[keep[[1]], 'omic'], paste("mc", 1, sep = ""), "N", sep = "_")
}
}
if (nrow(mycor) >= 2) { ### more than 2 regulators might be correlated in this omic
mygraph = igraph::graph_from_data_frame(mycor, directed=F)
mycomponents = igraph::clusters(mygraph)
mygraph$community<-mycomponents$membership ##save membership information
for (i in 1:mycomponents$no) {
#create the subgraphs of the clusters
mysubgraph = igraph::subgraph(mygraph,as.numeric(igraph::V(mygraph)[which(mygraph$community==i)]))
nedges = igraph::ecount(mysubgraph)
## see if it is a fully connected graph
if (nedges == ((mycomponents$csize[i]*(mycomponents$csize[i]-1))/2)){
correlacionados = names(mycomponents$membership[mycomponents$membership == i])
regulators = colnames(data)
## Escoge un regulador al azar como representante de cada componente conexa. Para cada componente conexa elimina aquellos reguladores
## que no han sido escogidos como representante.
keep = sample(correlacionados, 1) # mantiene uno al azar
reg.remove = setdiff(correlacionados, keep) # correlated regulator to remove
regulators = setdiff(regulators, reg.remove) # all regulators to keep
data = as.matrix(data[ ,regulators])
colnames(data) = regulators
index.reg = which(colnames(data) == as.character(keep))
colnames(data)[index.reg] = paste(reg.table[keep[[1]], 'omic'], paste("mc", i, sep = ""), "R", sep = "_")
# Asignacion de nombre al representante y nueva fila para el filtro de
# seleccion de variables (asi no se pierde la info del representante).
reg.table = rbind(reg.table, reg.table[keep,])
reg.table[nrow(reg.table), "regulator"] = paste(reg.table[keep[[1]], 'omic'], paste("mc", i, sep = ""), "R", sep = "_")
reg.table[keep, "filter"] = paste(reg.table[keep[[1]], 'omic'], paste("mc", i, sep = ""), "R", sep = "_")
rownames(reg.table) = reg.table[ ,"regulator"]
# Matriz que recoge los reguladores correlacionados con el representante: actual.correlation. Asi se puede ver si la correlacion es
# positiva o negativa y asignar el nombre. Intente hacer merge(), expand.grid(), pero no daba las mismas combinaciones que combn(), por lo que
# vi necesario hacer un bucle para quedarme con aquellas parejas que interesan (representante - resto de reguladores).
actual.couple = data.frame(t(combn(correlacionados,2)), stringsAsFactors = FALSE)
colnames(actual.couple) = colnames(mycorrelations[,c(1,2)])
actual.correlation = NULL
for(k in 1:nrow(actual.couple)){
if (any(actual.couple[k,c(1,2)] == keep)){
actual.correlation = rbind(actual.correlation, actual.couple[k,])
}
}
actual.correlation = merge(actual.correlation[,c(1,2)],mycorrelations)
# Uso la matriz anterior para recorrer las correlaciones y segun sea positiva
# o negativa, asigno un nombre.
for(k in 1:nrow(actual.correlation)){
if(actual.correlation[k,3] > 0){
index = as.character(actual.correlation[k, which(with(actual.correlation, actual.correlation[k,c(1,2)] != keep))])
reg.table[index, "filter"] = paste(reg.table[keep[[1]], 'omic'], paste("mc", i, sep = ""), "P", sep = "_")
} else{
index = as.character(actual.correlation[k, which(with(actual.correlation, actual.correlation[k,c(1,2)] != keep))])
reg.table[index, "filter"] = paste(reg.table[keep[[1]], 'omic'], paste("mc", i, sep = ""), "N", sep = "_")
}
}
} else{
j=1
mycomponents2= mycomponents
#Opción 1: Tomar como representante el que más edges tenga y crear subgrafos separando a los que no crean conexión con el
##Repite the proccess till there are no connected edges in the subgraph
while(sum(mycomponents2$csize)!=mycomponents2$no){
## Take the regulator(s) with more edges
mynumedges=table(igraph::as_edgelist(mysubgraph))
maxcorrelationed = names(which(mynumedges==max(mynumedges)))
if(length(maxcorrelationed)>1){
#Compute the sums (in absolute value) of the correlations and take as a representator the biggest
sums = sapply(maxcorrelationed, function(x) sum(abs(mycor[which(apply( mycor[,c(1,2)]==c(x), 1, any)),3])))
if(length(which(sums==max(sums)))>1){
repre = sample(names(which(sums==max(sums))), 1)
} else{
repre = names(which(sums == max(sums)))
}
} else{
repre = maxcorrelationed
}
correlacionados = names(which(igraph::as_adj(mysubgraph)[,repre]>0))
regulators = colnames(data)
regulators = setdiff(regulators, correlacionados) # all regulators to keep
data = as.matrix(data[ ,regulators])
colnames(data) = regulators
index.reg = which(colnames(data) == as.character(repre))
colnames(data)[index.reg] = paste(reg.table[repre, 'omic'], paste("mc", i, sep = ""), j, "R", sep = "_")
# Asignacion de nombre al representante y nueva fila para el filtro de
# seleccion de variables (asi no se pierde la info del representante).
reg.table = rbind(reg.table, reg.table[repre,])
reg.table[nrow(reg.table), "regulator"] = paste(reg.table[repre, 'omic'], paste("mc", i, sep = ""),j, "R", sep = "_")
reg.table[repre, "filter"] = paste(reg.table[repre, 'omic'], paste("mc", i, sep = ""),j, "R", sep = "_")
rownames(reg.table) = reg.table[ ,"regulator"]
# Matriz que recoge los reguladores correlacionados con el representante: actual.correlation. Asi se puede ver si la correlacion es
# positiva o negativa y asignar el nombre. Intente hacer merge(), expand.grid(), pero no daba las mismas combinaciones que combn(), por lo que
# vi necesario hacer un bucle para quedarme con aquellas parejas que interesan (representante - resto de reguladores).
actual.correlation = NULL
for(k in 1:nrow(mycor)){
if (any(mycor[k,c(1,2)] == repre)){
actual.correlation = rbind(actual.correlation, mycor[k,])
}
}
# Uso la matriz anterior para recorrer las correlaciones y segun sea positiva
# o negativa, asigno un nombre.
for(k in 1:nrow(actual.correlation)){
if(actual.correlation[k,3] > 0){
index = as.character(actual.correlation[k, which(with(actual.correlation, actual.correlation[k,c(1,2)] != repre))])
reg.table[index, "filter"] = paste(reg.table[repre, 'omic'], paste("mc", i, sep = ""),j, "P", sep = "_")
} else{
index = as.character(actual.correlation[k, which(with(actual.correlation, actual.correlation[k,c(1,2)] != repre))])
reg.table[index, "filter"] = paste(reg.table[repre, 'omic'], paste("mc", i, sep = ""),j, "N", sep = "_")
}
}
mysubgraph<-igraph::delete_vertices(mysubgraph,correlacionados)
mycomponents2 = igraph::clusters(mysubgraph)
j=j+1
}
}
}
}
resultado = list(RegulatorMatrix = data, SummaryPerGene = reg.table)
rownames(resultado$SummaryPerGene) = resultado$SummaryPerGene[,"regulator"]
return(resultado)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.