R/recruitment.plots.r

Defines functions plot.srr

Documented in plot.srr

# Plots based on recruitment
# Based on code by Rob Scott 2020

# Plotting stock-recruitment relationships

#' Plot the stock-recruitment relationship
#'
#' For each model, the fitted Beverton-Holt stock-recruiment relationship is plotted.
#' Estimated adult biomass and recruitment is also plotted.
#' @param rep.list A list of MFCLRep objects or a single MFCLRep object. The reference model should be listed first.
#' @param rep.names A vector of character strings naming the models for plotting purposes. If not supplied, model names will be taken from the names in the rep.list (if available) or generated automatically.
#' @param show.legend Do you want to show the plot legend, TRUE (default) or FALSE.
#' @param palette.func A function to determine the colours of the models. The default palette has the reference model in black. It is possible to determine your own palette function. Two functions currently exist: default.model.colours() and colourblind.model.colours().
#' @param save.dir Path to the directory where the outputs will be saved
#' @param save.name Name stem for the output, useful when saving many model outputs in the same directory
#' @param annual Boolean. Do you want to plot the annual or seasonal SRR. Default is FALSE
#' @param sb.units Divisor for rescaling the biomass units. Default is 1000
#' @param rec.units Divisor for rescaling the recruitment units. Default is 1000000
#' @param ... Passes extra arguments to the palette function. Use the argument all.model.colours to ensure consistency of model colours when plotting a subset of models.
#' @export
#' @import FLR4MFCL
#' @import magrittr
#' @importFrom data.table data.table
#' @importFrom data.table as.data.table
#' @importFrom data.table rbindlist
#' @importFrom ggthemes theme_few
#' @importFrom ggplot2 aes
#' @importFrom ggplot2 ggplot
#' @importFrom ggplot2 xlab
#' @importFrom ggplot2 ylab
#' @importFrom ggplot2 ylim
#' @importFrom ggplot2 ggtitle
#' @importFrom ggplot2 facet_wrap
#' @importFrom ggplot2 ggsave
#' @importFrom ggplot2 scale_color_manual
#' @importFrom ggplot2 geom_line
#' @importFrom ggplot2 geom_point
#' @importFrom ggplot2 scale_fill_viridis_c
#'
plot.srr <- function(rep.list, rep.names=NULL, show.legend=TRUE, palette.func=default.model.colours, save.dir, save.name, annual = FALSE, sb.units=1000,rec.units=1000000,...){
  # Check and sanitise input MFCLRep arguments and names
  rep.list <- check.rep.args(rep=rep.list, rep.names=rep.names)
  rep.names <- names(rep.list)

  adult_biomass <- as.data.frame(FLQuants(lapply(rep.list, function(x) {areaSums(adultBiomass(x))})))[,c("year","season","data", "qname")]
  recruitment <- as.data.frame(FLQuants(lapply(rep.list, function(x) {areaSums(popN(x)[1,])})))[,c("year","season","data", "qname")]
  colnames(adult_biomass)[colnames(adult_biomass)=="data"] <- "sb"
  colnames(recruitment)[colnames(recruitment)=="data"] <- "rec"
  # Basically plotting year to year
  # This might not be strictly correct as the recruitment function is fitted using
  # some kind of rolling window of SB (see that report on bias correction)
  pdat <- merge(adult_biomass, recruitment)

  # Data for the BH shape
  max_sb <- max(adult_biomass$sb) * 1.2 # Just add another 20% on
  sb <- seq(0, max_sb, length=100)
  # Extract the BH params and make data.frame of predicted recruitment
  params <- lapply(rep.list, function(x) c(srr(x)[c("a","b")]))
  bhdat <- data.frame(rec = unlist(lapply(params, function(x) (sb * x[1]) / (x[2]+sb))), sb=sb, qname = rep(rep.names, each=length(sb)))

  
  # Want data to have Model names in the original order - important for plotting order
  pdat$qname <- factor(pdat$qname, levels=names(rep.list))
  bhdat$qname <- factor(bhdat$qname, levels=names(rep.list))

  if(annual)
  {
    pdat = data.table::as.data.table(pdat)
    pdat = pdat[,.(sb=mean(sb,na.rm=TRUE),rec=mean(rec,na.rm=TRUE)),by=.(year,qname)]
    pdat = as.data.frame(pdat)
  }

  if(length(rep.list)>1)
  {
      colour_values <- palette.func(selected.model.names = names(rep.list), ...)
      # Plot everything
      p <- ggplot2::ggplot(pdat, aes(x=sb/sb.units, y=rec/rec.units))
      p <- p + ggplot2::geom_point(aes(group=qname, colour=qname, fill=qname))
      p <- p + ggplot2::ylim(c(0,NA))
      p <- p + ggplot2::geom_line(data=bhdat, aes(x=sb/sb.units, y=rec/rec.units, colour=qname), size=1.2)
      p <- p + ggplot2::xlab(paste0("Adult biomass (mt; ",format(sb.units,big.mark=",", trim=TRUE,scientific=FALSE),"s)")) + ggplot2::ylab(paste0("Recruitment (N; ",format(rec.units,big.mark=",", trim=TRUE,scientific=FALSE),"s)"))
      p <- p + ggplot2::scale_color_manual("Model",values=colour_values)
      p <- p + ggplot2::scale_fill_manual("Model",values=colour_values)
      p <- p + ggthemes::theme_few()
      if (show.legend==FALSE){
        p <- p + theme(legend.position="none")
      }

      # Crappy hack to make the black points plot last because geom_point is not ordering by factor
      if("black" %in% colour_values){
        black_model <- names(which(colour_values=="black"))
        black_dat <- subset(pdat, qname==black_model)
        p <- p + ggplot2::geom_point(data=black_dat, aes(x=sb/sb.units, y=rec/rec.units), colour="black")
      }
  } else {
          colour_values <- palette.func(selected.model.names = names(rep.list), ...)
      # Plot everything
      p <- ggplot2::ggplot(pdat, aes(x=sb/sb.units, y=rec/rec.units))
      p <- p + ggplot2::geom_point(aes(fill=year),shape=21,color="black",size=2)
      p <- p + ggplot2::ylim(c(0,NA))
      p <- p + ggplot2::geom_line(data=bhdat, aes(x=sb/sb.units, y=rec/rec.units),color="black", size=1.2)
      p <- p + ggplot2::xlab(paste0("Adult biomass (mt; ",format(sb.units,big.mark=",", trim=TRUE,scientific=FALSE),"s)")) + ggplot2::ylab(paste0("Recruitment (N; ",format(rec.units,big.mark=",", trim=TRUE,scientific=FALSE),"s)"))
      p <- p + ggplot2::scale_fill_viridis_c("Year")
      p <- p + ggthemes::theme_few()
      if (show.legend==FALSE){
        p <- p + theme(legend.position="none")
      }
  }

	

  save_plot(save.dir, save.name, plot=p)

  return(p)
}

#' Plot recruitment distribution proportions
#'
#' Plot distribution of proportion of total recruitment (averaged over year range) between quarters and regions across models. If only a single repfile is entered then plot the distribution of proportions across time
#' @param rep.list A list of MFCLRep objects or a single MFCLRep object. The reference model should be listed first.
#' @param rep.names A vector of character strings naming the models for plotting purposes. If not supplied, model names will be taken from the names in the rep.list (if available) or generated automatically.
#' @param year_range The year range to average the total recruitment over. Default is the last 10 years.
#' @param plot_type Can be "violin" for a violin plot or "box" for a boxplot. The default is boxplot.
#' @param overlay_data Do you want to overlay the original data on the distribution? TRUE or FALSE (default).
#' @param palette.func A function to determine the colours of each area. The default palette has the reference model in black. It is possible to determine your own palette function. Two functions currently exist: default.model.colours() and colourblind.model.colours().
#' @param save.dir Path to the directory where the outputs will be saved
#' @param save.name Name stem for the output, useful when saving many model outputs in the same directory
#' @param ... Passes extra arguments to the palette function. Use the argument all.model.colours to ensure consistency of model colours when plotting a subset of models.
#' @export
#' @import FLR4MFCL
#' @import magrittr
#' @importFrom ggplot2 geom_boxplot
#' @importFrom ggplot2 geom_violin
plot.rec.dist <- function(rep.list, rep.names=NULL, year_range = (as.numeric(range(rep.list[[1]])["maxyear"])-9):as.numeric(range(rep.list[[1]])["maxyear"]), plot_type="violin", overlay_data=FALSE, palette.func=default.model.colours, save.dir, save.name, ...){
  # Check and sanitise input MFCLRep arguments and names
  rep.list <- check.rep.args(rep=rep.list, rep.names=rep.names)
  rep.names <- names(rep.list)

  if (length(rep.list) == 1) {
    dat <- as.data.frame(popN(rep.list[[1]])[1,ac(year_range)])
    dat$total_rec <- c(areaSums(seasonSums(popN(rep.list[[1]])[1,ac(year_range)])))
    dat$prop_rec <- dat$data / dat$total_rec
  } else {

    dat <- lapply(rep.list, function(x){
      out <- as.data.frame(yearMeans(popN(x)[1,ac(year_range)]))
      out$total_rec  <- c(areaSums(seasonSums(yearMeans(popN(x)[1,ac(year_range)]))))
      out$prop_rec <- out$data / out$total_rec
      return(out)
    }
    )
    dat <- do.call("rbind", dat)
  }

  # Tidy up data
  dat$model <- rep(rep.names, each=dim(dat)[1] / length(rep.names))
  no_seasons <- length(unique(dat$season))
  no_areas <- length(unique(dat$area))
  dat$area_name <- paste("Region ", dat$area, sep="")

  # And plot
  # Colour by area - not sure it's a great idea
  colour_values <- palette.func(selected.model.names = unique(dat$area_name), ...)
  p <- ggplot2::ggplot(dat, ggplot2::aes(x=season, y=prop_rec))
  p <- p + geom_hline(yintercept=0,color='grey85',size=0.8)
  if(plot_type=="violin"){
    p <- p + ggplot2::geom_violin(aes(fill=area_name))
  }
  else {
    p <- p + ggplot2::geom_boxplot(aes(fill=area_name))
  }
  if (overlay_data){
    p <- p + ggplot2::geom_point(alpha=0.25) # Maybe overlay the original data?
  }
  p <- p + ggplot2::facet_wrap(~area_name, ncol = no_areas)
  p <- p + ggplot2::xlab("Quarter") + ggplot2::ylab("Proportion of total recruitment")
  p <- p + ggthemes::theme_few()
  p <- p + ggplot2::theme(legend.position = "none")
	p <- p + ggplot2::scale_fill_manual("Model",values=colour_values)

  save_plot(save.dir, save.name, plot=p)

  return(p)
}

#' Plot estimated recruitment deviates
#'
#' Plot estimated recruitment deviates for a single model, by quarter and region.
#' A loess smoothed fit is shown.
#' @param par.list A list of MFCLRep objects or a single MFCLRep object. The reference model should be listed first.
#' @param par.names A vector of character strings naming the models for plotting purposes. If not supplied, model names will be taken from the names in the rep.list (if available) or generated automatically.
#' @param show.legend Do you want to show the plot legend, TRUE (default) or FALSE.
#' @param show.points Do you want to show points as well as the smoother for the difference plots? Default is FALSE.
#' @param palette.func A function to determine the colours of the models. The default palette has the reference model in black. It is possible to determine your own palette function. Two functions currently exist: default.model.colours() and colourblind.model.colours().
#' @param save.dir Path to the directory where the outputs will be saved
#' @param save.name Name stem for the output, useful when saving many model outputs in the same directory
#' @param ... Passes extra arguments to the palette function. Use the argument all.model.names to ensure consistency of model colours when plotting a subset of models.
#' @export
#' @import FLR4MFCL
#' @import magrittr
#' @importFrom ggplot2 scale_x_continuous
plot.rec.devs <- function(par.list, par.names=NULL, show.legend=TRUE, show.points=FALSE, palette.func=default.model.colours, save.dir, save.name, ...){

  # Check args
  par.list <- check.par.args(par=par.list, par.names=par.names)
  par.names <- names(par.list)
  # Grab the region_rec_var per Model
  recvars <- lapply(par.list, function(x) as.data.frame(region_rec_var(x)))
  pdat <-  data.table::rbindlist(recvars, idcol="Model")
  pdat$area_name <- paste("Region ", pdat$area, sep="")
  pdat$season_name <- paste("Quarter ", pdat$season, sep="")

  year_axis_breaks <- seq(10*floor(min(pdat$year)/10), 10*ceiling(max(pdat$year)/10) , 20)

  
  # Want pdat to have Model names in the original order - important for plotting order
  pdat[,Model:=factor(Model, levels=names(par.list))]

  colour_values <- palette.func(selected.model.names = names(par.list), ...)
  p <- ggplot2::ggplot(pdat, ggplot2::aes(x=year, y=data))
  if(show.points==TRUE){
    p <- p + ggplot2::geom_point(aes(colour=Model))
  }
  if(length(par.list)==1){
    p <- p + ggplot2::geom_smooth(colour="red", method = 'loess', formula = 'y~x', na.rm=TRUE, se=FALSE)
  }
  # Otherwise colour the smoother by model
  if(length(par.list)>1){
    p <- p + ggplot2::geom_smooth(aes(colour=Model), method = 'loess', formula = 'y~x', na.rm=TRUE, se=FALSE)
  }
  p <- p + ggplot2::facet_grid(season_name ~ area_name, scales="free")
  p <- p + ggplot2::geom_hline(ggplot2::aes(yintercept=0.0), linetype=2)
  p <- p + ggplot2::scale_color_manual("Model",values=colour_values)
  p <- p + ggplot2::xlab("Year") + ggplot2::ylab("Recruitment deviate")
  p <- p + ggplot2::scale_x_continuous(breaks=year_axis_breaks)
  p <- p + ggthemes::theme_few()
  if (show.legend==FALSE){
    p <- p + theme(legend.position="none")
  }

  save_plot(save.dir, save.name, plot=p)

	return(p)
}





#' Plot recruitment distribution proportions by decade for a single model
#'
#' Plot distribution of proportion of total recruitment (averaged over year range) between quarters and regions across models. If only a single repfile is entered then plot the distribution of proportions across time
#' @param rep A list of MFCLRep objects or a single MFCLRep object. The reference model should be listed first.
#' @param plot_type Can be "violin" for a violin plot or "box" for a boxplot. The default is boxplot.
#' @param overlay_data Do you want to overlay the original data on the distribution? TRUE or FALSE (default).
#' @param palette.func A function to determine the colours of each area. The default palette has the reference model in black. It is possible to determine your own palette function. Two functions currently exist: default.model.colours() and colourblind.model.colours().
#' @param save.dir Path to the directory where the outputs will be saved
#' @param save.name Name stem for the output, useful when saving many model outputs in the same directory
#' @param ... Passes extra arguments to the palette function. Use the argument all.model.colours to ensure consistency of model colours when plotting a subset of models.
#' @export
#' @import FLR4MFCL
#' @import magrittr
#' @importFrom ggplot2 geom_boxplot
#' @importFrom ggplot2 geom_violin
plot.rec.dist.decade <- function(rep, plot_type="violin", overlay_data=FALSE, palette.func=default.model.colours, save.dir, save.name, ...){
  # Check and sanitise input MFCLRep arguments and names
  rep <- check.rep.args(rep=rep, rep.names=NULL)

  if (length(rep) != 1) stop("You accidentally entered more than one MFCLRep object into this function. Try Again.")

  dat <- as.data.frame(popN(rep[[1]])[1])
  dat$total_rec <- c(areaSums(seasonSums(popN(rep[[1]])[1])))
  dat$prop_rec <- dat$data / dat$total_rec

  # Tidy up data
  no_seasons <- length(unique(dat$season))
  no_areas <- length(unique(dat$area))
  dat$area_name <- paste("Region ", dat$area, sep="")
  dat$decade <- trunc(dat$year/10)*10

  # And plot
  # Colour by area - not sure it's a great idea
  colour_values <- palette.func(selected.model.names = unique(dat$area_name), ...)
  p <- ggplot2::ggplot(dat, ggplot2::aes(x=season, y=prop_rec))
  p <- p + geom_hline(yintercept=0,color='grey85',size=0.8)
  if(plot_type=="violin"){
    p <- p + ggplot2::geom_violin(aes(fill=area_name))
  }
  else {
    p <- p + ggplot2::geom_boxplot(aes(fill=area_name))
  }
  if (overlay_data){
    p <- p + ggplot2::geom_point(alpha=0.25) # Maybe overlay the original data?
  }
  p <- p + ggplot2::facet_grid(decade~area_name)
  p <- p + ggplot2::xlab("Quarter") + ggplot2::ylab("Proportion of total recruitment")
  p <- p + ggthemes::theme_few()
  p <- p + ggplot2::theme(legend.position = "none")
	p <- p + ggplot2::scale_fill_manual("Model",values=colour_values)

  save_plot(save.dir, save.name, plot=p)

  return(p)
}
PacificCommunity/ofp-sam-diags4MFCL documentation built on July 18, 2021, 9:25 a.m.