BiocStyle::markdown() knitr::opts_chunk$set(tidy = FALSE, message = FALSE)
library(echodata)
The *echolocatoR.
The following functions provides API access to the fine-mapping results, pre-computed LD matrices, and plots available on the echolocatoR Fine-mapping Portal.
Peruse the metadata to see the available data types (e.g. "GWAS", "QTL"), datasets (e.g. "Ripke_2014", "Wray_2018"), and phenotypes (e.g. "Schizophrenia", "Major Depressive Disorder").
meta <- echodata::portal_metadata() knitr::kable(meta)
Query and download data from the echolocatoR Fine-mapping Portal.
portal_query
will return a list of paths where each file
has been downloaded locally, in a hierarchical folder structure
(i.e. dataset_type --> dataset --> locus --> data_types
)
results_dir <- tempdir() local_files <- echodata::portal_query(dataset_types="GWAS", phenotypes = c("schizophrenia", "parkinson"), file_types = c("multi_finemap","LD"), loci = c("BST1","CHRNB1","LRRK2"), LD_panels = "UKB", results_dir = results_dir) knitr::kable(utils::head(local_files))
Next, we can gather all of the fine-mapping results generated by
finemap_loci()
previously.
merge_finemapping_results
recursively searches for the correct files
within a hierarchical folder structure and imports only the multi-finemap files.
merged_DT <- echodata::merge_finemapping_results(dataset = results_dir, minimum_support = 0, include_leadSNPs = TRUE, consensus_thresh = 2) echodata::results_report(merged_DT) knitr::kable(utils::head(merged_DT))
Next, we import the a subset of the LD matrices for only the lead SNP.
ld_files <- local_files[file_type=="LD",] ld_matrices <- lapply(stats::setNames(ld_files$path_local, ld_files$locus), function(x){ data.table::fread(x) }) knitr::kable(utils::head(ld_matrices[[1]]))
utils::sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.