## Export: inla
##! \name{inla}
##! \alias{inla}
##!
##! \title{Bayesian analysis of
##! structured additive models} \description{\code{inla} performs a
##! full Bayesian analysis of additive models using Integrated Nested
##! Laplace approximation
##! }
##!
##! \usage{
##!inla(
##! formula,
##! family = "gaussian",
##! contrasts = NULL,
##! data,
##! quantiles=c(0.025, 0.5, 0.975),
##! E = NULL,
##! offset=NULL,
##! scale = NULL,
##! weights = NULL,
##! Ntrials = NULL,
##! strata = NULL,
##! link.covariates = NULL,
##! verbose = FALSE,
##! lincomb = NULL,
##! control.compute = list(),
##! control.predictor = list(),
##! control.family = list(),
##! control.inla = list(),
##! control.results = list(),
##! control.fixed = list(),
##! control.mode = list(),
##! control.expert = list(),
##! control.hazard = list(),
##! control.lincomb = list(),
##! control.update = list(),
##! only.hyperparam = FALSE,
##! inla.call = inla.getOption("inla.call"),
##! inla.arg = inla.getOption("inla.arg"),
##! num.threads = inla.getOption("num.threads"),
##! keep = inla.getOption("keep"),
##! working.directory = inla.getOption("working.directory"),
##! silent = inla.getOption("silent"),
##! debug = inla.getOption("debug"),
##! .parent.frame = parent.frame()
##! )
##!
##! }
##! \arguments{
`inla` =
function (
##! \item{formula}{ A \code{inla} formula like \code{y
##!~1 + z + f(ind, model="iid")} + f(ind2,
##!weights, model="ar1") This is much like the formula
##!for a \code{glm} except that smooth or spatial terms
##!can be added to the right hand side of the formula.
##!See \code{\link{f}} for full details and the web site
##!\url{www.r-inla.org} for several worked out
##!examples. Each smooth or spatial term specified
##!through \code{f} should correspond to separate column
##!of the data frame \code{data}.
##!The response
##!variable, \code{y} can be a univariate response
##!variable, a list or the output of the function
##!\code{inla.surf} for survival analysis models.}
formula,
##!\item{family}{ A string indicating the likelihood
##! family. The default is \code{gaussian} with identity
##! link. See \code{names(inla.models()$likelihood)} for a
##! list of possible alternatives.}
family = "gaussian",
##!\item{contrasts}{Optional contrasts for the fixed
##!effects; see \code{?lm} or \code{?glm} for details.}
contrasts = NULL,
##!\item{data}{ A data frame or list containing the
##!variables in the model. The data frame MUST be
##!provided}
data,
##!\item{quantiles}{ A vector of quantiles,
##!\eqn{p(0), p(1),\dots}{p(0), p(1),\ldots} to compute
##!for each posterior marginal. The function returns,
##!for each posterior marginal, the values
##!\eqn{x(0), x(1),\dots}{x(0), x(1),\ldots} such that
##!\deqn{\mbox{Prob}(X<x(p))=p}{Prob(X<x)=p} }
quantiles=c(0.025, 0.5, 0.975),
##!\item{E}{ Known component in the mean for the Poisson
##!likelihoods defined as \deqn{E_i\exp(\eta_i)}{E
##!exp(eta)} where \deqn{\eta_i}{eta} is the linear
##!predictor. If not provided it is set to \code{rep(1, n.data)}.}
E = NULL,
##!\item{offset}{This argument is used to specify an
##!a-priori known and fixed component to be included in
##!the linear predictor during fitting. This should be
##!\code{NULL} or a numeric vector of length either one
##!or equal to the number of cases. One or more
##!\code{offset()} terms can be included in the formula
##!instead or as well, and if both are used, they are
##!combined into a common offset. If the
##!\code{A}-matrix is used in the linear predictor
##!statement \code{control.predictor}, then the
##!\code{offset} given in this argument is added to
##!\code{eta*}, the linear predictor related to the
##!observations, as \code{eta* = A eta + offset},
##!whereas an offset in the formula is added to
##!\code{eta}, the linear predictor related to the
##!formula, as \code{eta = ... + offset.formula}. So in
##!this case, the offset defined here and in the formula
##!has a different meaning and usage.}
offset=NULL,
##!\item{scale}{ Fixed (optional) scale parameters of
##!the precision for Gaussian and Student-T response
##!models. Default value is rep(1, n.data).}
scale = NULL,
##!\item{weights}{ Fixed (optional) weights parameters of
##!the likelihood, so the log-likelihood[i] is changed into
##!weights[i]*log-likelihood[i]. Default value is rep(1,
##!n.data). Due to the danger of mis-interpreting the results (see below), this option is DISABLED
##!by default. You can enable this option for the rest of your \code{R} session,
##!doing \code{inla.setOption(enable.inla.argument.weights=TRUE)}.
##!WARNING: The normalizing constant for the likelihood is NOT recomputed, so
##!ALL marginals (and the marginal likelihood) must be interpreted with great care.
##!Possibly, you may want to set the prior for the hyperparameters to \code{"uniform"}
##!and the integration strategy to \code{"eb"} to mimic a maximum-likelihood approach.}
weights = NULL,
##!\item{Ntrials}{ A vector containing the number of
##!trials for the \code{binomial} likelihood. Default
##!value is \code{rep(1, n.data)}.}
Ntrials = NULL,
##!\item{strata}{Fixed (optional) strata indicators
##!for tstrata likelihood model.}
strata = NULL,
##!\item{link.covariates}{A vector or matrix with covariates for link functions}
link.covariates = NULL,
##!\item{verbose}{
##!Boolean indicating if the \code{inla}-program should
##!run in a verbose mode (default \code{FALSE}).}
verbose = FALSE,
##!\item{lincomb}{ Used to define linear combination of
##!nodes in the latent field. The posterior distribution
##!of such linear combination is computed by the
##!\code{inla} function. See
##!\url{http://www.r-inla.org/help/faq} for examples of
##!how to define such linear combinations.}
lincomb = NULL,
##!\item{control.compute}{ See \code{?control.compute}}
control.compute = list(),
##!\item{control.predictor}{ See
##!\code{?control.predictor}}
control.predictor = list(),
##!\item{control.family}{ See \code{?control.family}}
control.family = list(),
##!\item{control.inla}{ See \code{?control.inla}}
control.inla = list(),
##!\item{control.results}{ See \code{?control.result}}
control.results = list(),
##!\item{control.fixed}{ See \code{?control.fixed}}
control.fixed = list(),
##!\item{control.mode}{ See \code{?control.mode}}
control.mode = list(),
##!\item{control.expert}{ See \code{?control.expert}}
control.expert = list(),
##!\item{control.hazard}{ See \code{?control.hazard}}
control.hazard = list(),
##!\item{control.lincomb}{ See \code{?control.lincomb}}
control.lincomb = list(),
##!\item{control.update}{ See \code{?control.update}}
control.update = list(),
##!\item{only.hyperparam}{ A boolean variable saying if
##!only the hyperparameters should be computed. This option is mainly used
##!internally. (TODO: This option should not be located here, change it!)}
only.hyperparam = FALSE,
##!\item{inla.call}{ The path to, or the name of, the
##!\code{inla}-program. This is program is installed
##!together with the \code{R}-package, but, for example,
##!a native compiled version can be used instead to
##!improve the performance.}
inla.call = inla.getOption("inla.call"),
##!\item{inla.arg}{ A string indicating ALL arguments to
##!the 'inla' program and do not include default
##!arguments. (OOPS: This is an expert option!)}
inla.arg = inla.getOption("inla.arg"),
##!\item{num.threads}{ Maximum number of threads the
##!\code{inla}-program will use. xFor Windows this
##!defaults to 1, otherwise its defaults to \code{NULL}
##!(for which the system takes over control).}
num.threads = inla.getOption("num.threads"),
##!\item{keep}{ A boolean variable indicating that the
##!working files (ini file, data files and results
##!files) should be kept. If TRUE and no
##!\code{working.directory} is specified the working
##!files are stored in a directory called "inla". }
keep = inla.getOption("keep"),
##!\item{working.directory}{ A string giving the name
##!of an non-existing directory where to store the
##!working files.}
working.directory = inla.getOption("working.directory"),
##!\item{silent}{If equal to 1L or TRUE, then the
##!\code{inla}-program would be ``silent''. If equal to
##!2L, then supress also error messages from the
##!\code{inla}-program.}
silent = inla.getOption("silent"),
##!\item{debug}{ If \code{TRUE}, then enable some debug
##!output. }
debug = inla.getOption("debug"),
##!\item{.parent.frame}{Internal use only}
.parent.frame = parent.frame()
)
##!}
##!\value{%%
##!\code{inla} returns an object of class \code{"inla"}. This is a list
##!containing at least the following arguments:
##!\item{summary.fixed}{Matrix containing the mean and standard
##!deviation (plus, possibly quantiles and cdf) of the the fixed
##!effects of the model.}
##!\item{marginals.fixed}{
##!A list containing the posterior marginal
##!densities of the fixed effects of the model.}
##!\item{summary.random}{List of matrices containing the mean and
##!standard deviation (plus, possibly quantiles and cdf) of the
##!the smooth or spatial effects defined through \code{f()}.}
##!\item{marginals.random}{If
##!\code{return.marginals.random}=\code{TRUE} in
##!\code{control.results} (default), a list containing the
##!posterior marginal densities of the random effects defined
##!through \code{f}.}
##!\item{summary.hyperpar}{
##!A matrix containing the mean and sd
##!(plus, possibly quantiles and cdf) of the hyperparameters of
##!the model }
##!\item{marginals.hyperpar}{
##!A list containing the posterior marginal
##!densities of the hyperparameters of the model.}
##!\item{summary.linear.predictor}{
##! A matrix containing the mean and sd
##! (plus, possibly quantiles and cdf) of the linear predictors
##! \eqn{\eta} in
##! the model
##! }
##!\item{marginals.linear.predictor}{
##! If \code{compute=TRUE} in
##! \code{control.predictor}, a list containing the posterior
##! marginals of the linear predictors \eqn{\eta} in the model.
##! }
##!\item{summary.fitted.values}{ A matrix containing the mean and
##! sd (plus, possibly quantiles and cdf) of the fitted values
##! \eqn{g^{-1}(\eta)} obtained by transforming the linear
##! predictors by the inverse of the link function. This quantity
##! is only computed if \code{marginals.fitted.values} is
##! computed. Note that if an observation is \code{NA} then the
##! identity link is used. You can manually transform a marginal
##! using \code{inla.marginal.transform()} or set the argument
##! \code{link} in the \code{control.predictor}-list;
##! see \code{?control.predictor}
##! }
##!\item{marginals.fitted.values}{
##! If \code{compute=TRUE} in
##! \code{control.predictor}, a list containing the posterior
##! marginals of the fitted values
##! \eqn{g^{-1}(\eta)} obtained by
##! transforming the linear predictors by the inverse of the link
##! function.
##! Note that if an observation is \code{NA} then the
##! identity link is used. You can manually transform a marginal
##! using \code{inla.marginal.transform()} or set the argument
##! \code{link} in the \code{control.predictor}-list;
##! see \code{?control.predictor}
##! }
##!\item{summary.lincomb}{
##!If \code{lincomb != NULL} a list of
##!matrices containing the mean and sd (plus, possibly quantiles
##!and cdf) of all linear combinations defined. }
##!\item{marginals.lincomb}{
##!If \code{lincomb != NULL} a list of
##! posterior marginals of all linear combinations defined. }
##!\item{joint.hyper}{
##!A matrix containing the joint density of
##!the hyperparameters (in the internal scale) }
##!\item{dic}{
##!If \code{dic}=\code{TRUE} in \code{control.compute}, the
##!deviance information criteria and effective number of parameters,
##!otherwise \code{NULL}
##!}
##!\item{cpo}{
##!If \code{cpo}=\code{TRUE} in \code{control.compute}, a list
##!of three elements: \code{cpo$cpo} are the values of the conditional
##!predictive ordinate (CPO), \code{cpo$pit} are the values of the
##!probability integral transform (PIT) and \code{cpo$failure}
##!indicates whether some assumptions are violated. In short, if
##!cpo$failure[i] > 0 then some assumption is violated, the higher the
##!value (maximum 1) the more seriously.
##!}
##!\item{po}{
##!If \code{po}=\code{TRUE} in \code{control.compute}, a list
##!of one elements: \code{po$po} are the values of the
##!predictive ordinate (CPO) (\code{pi(yi|y)})
##!}
##!\item{waic}{
##!If \code{waic}=\code{TRUE} in \code{control.compute}, a list
##!of two elements: \code{waic$waic} is the Watanabe-Akaike information criteria, and
##!\code{waic$p.eff} is the estimated effective number of parameters
##!}
##!\item{mlik}{
##!If \code{mlik}=\code{TRUE} in \code{control.compute}, the
##! log marginal likelihood of the model (using two different estimates), otherwise \code{NULL}
##!}
##! \item{neffp}{
##!Expected effective number of parameters in the model. The
##!standard deviation of the expected number of parameters and the
##!number of replicas for parameter are also returned}
##!\item{mode}{
##!A list of two elements: \code{mode$theta} is the
##!computed mode of the hyperparameters and \code{mode$x} is the
##!mode of the latent field given the modal value of the
##!hyperparamters.
##!}
##!\item{call}{
##!The matched call.}
##!\item{formula}{
##!The formula supplied}
##!\item{nhyper}{
##!The number of hyperparameters in the model}
##!\item{cpu.used}{
##!The cpu time used by the \code{inla} function}
##!}
##!\references{
##!Rue, H. and Martino, S. and Chopin, N. (2009)
##!\emph{Approximate Bayesian Inference for latent Gaussian models
##!using Integrated Nested Laplace Approximations, JRSS-series B
##!(with discussion)}, vol 71, no 2, pp 319-392.
##!Rue, H and Held, L. (2005) \emph{Gaussian Markov Random Fields
##!- Theory and Applications} Chapman and Hall}
##!\author{Havard Rue \email{hrue@math.ntnu.no} and Sara Martino}
##!\seealso{\code{\link{f}},
##!\code{\link{inla.hyperpar}} }
##!\examples{
##!\dontrun{
##!##See the web page \url{www.r-inla.org} for a series of worked out examples
##!}
##!}
{
my.time.used = numeric(4)
my.time.used[1] = Sys.time()
## keep track of all priors and keep the original data
all.hyper = list()
data.orig = data
if (missing(formula)) {
stop("Usage: inla(formula, family, data, ...); see ?inla\n")
}
if (missing(data)) {
stop("Missing data.frame/list `data'. Leaving `data' empty might lead to\n\t\tuncontrolled behaviour, therefore is it required.")
}
if (!is.data.frame(data) && !is.list(data)) {
stop("\n\tArgument `data' must be a data.frame or a list.")
}
if (!missing(weights)) {
if (!is.null(weights)) {
if (!inla.getOption("enable.inla.argument.weights")) {
stop(paste("Argument 'weights' must be enabled before use due to the risk of mis-interpreting the results.\n",
"\tUse 'inla.setOption(\"enable.inla.argument.weights\", TRUE)' to enable it; see ?inla"))
}
}
}
## if data is a list, then it can contain elements that defines a
## model, like f(idx, model = model.objects). These objects crash
## the formula routines in R since then the data cannot be cast
## into a data.frame. to solve this, we remove such objects from
## data, and create a second data-object, data.model, which hold
## these.
data.model = NULL
if (is.list(data) && length(data) > 0L) {
## first check if all elements have names
if (any(nchar(names(data)) == 0L)) {
stop(paste("Elements in the 'data'-list has no name: data[[k]], for k=c(", inla.paste(which(nchar(names(data)) == 0L), sep=","), ")."))
}
i.remove = c()
for(i in 1:length(data)) {
## these are the objects which we want to remove:
## inla.model.object.classes()
if (any(inherits(data[[i]], inla.model.object.classes()))) {
add.to = list(data[[i]])
names(add.to) = names(data)[i]
data.model = c(data.model, add.to)
i.remove = c(i.remove, i)
}
}
names.remove = names(data)[i.remove]
for(nm in names.remove) {
idx = which(names(data) == nm)
data[[idx]] = NULL
}
}
## check all control.xx arguments here. do the assign as variable
## expansion might occur.
control.compute = inla.check.control(control.compute, data)
control.predictor = inla.check.control(control.predictor, data)
## do not check control.family here, as we need to know n.family
control.inla = inla.check.control(control.inla, data)
control.results = inla.check.control(control.results, data)
control.fixed = inla.check.control(control.fixed, data)
control.mode = inla.check.control(control.mode, data)
control.expert = inla.check.control(control.expert, data)
control.hazard = inla.check.control(control.hazard, data)
control.lincomb = inla.check.control(control.lincomb, data)
control.update = inla.check.control(control.update, data)
n.family = length(family)
for(i in 1:n.family) {
family[i] = inla.trim.family(family[i])
## check if this family is legal.
if (is.null(inla.model.properties(family[i], "likelihood"))) {
stop(paste("Unknown family: ", family[i], ". Do `names(inla.models()$likelihood)' to list available families.", sep=""))
}
}
## if the user specify inla.call="remote" or "inla.remote" then
## use the internal inlaprogram
remote = FALSE
submit = FALSE
submit.id = ""
if (inla.strcasecmp(inla.call, "remote") ||
inla.strcasecmp(inla.call, "inla.remote") ||
length(grep("/inla.remote$", inla.call)) > 0 ||
length(grep("/inla.remote.cygwin$", inla.call)) > 0) {
remote = TRUE
inla.call = system.file("bin/remote/inla.remote", package="INLA")
if (inla.os("windows")) {
inla.call = paste(inla.call, ".cygwin", sep="")
}
} else if (inla.strcasecmp(inla.call, "submit") ||
inla.strcasecmp(inla.call, "inla.submit") ||
length(grep("/inla.submit$", inla.call)) > 0) {
remote = TRUE
submit = TRUE
submit.id = paste(gsub("[ :]", "-", date()), "---", as.integer(runif(1,min=1E8,max=1E9-1)), sep="")
inla.call = system.file("bin/remote/inla.submit", package="INLA")
if (inla.os("windows")) {
inla.call = paste(inla.call, ".cygwin", sep="")
}
}
## Need to do this here.
cont.fixed = inla.set.control.fixed.default()
cont.fixed[names(control.fixed)] = control.fixed
##
## check for survival model with a baseline-hazard. if so, then
## expand the data-frame and call inla() again.
##
have.surv = FALSE
cont.hazard = NULL
for(i in 1:n.family)
have.surv = have.surv || inla.model.properties(family[i], "likelihood")$survival
if (have.surv && (inla.one.of(family, c("coxph")))) {
## This is not supported yet.
stopifnot(is.null(control.predictor$A))
cph = inla.coxph(formula, data, control.hazard, debug = debug)
result = inla(
cph$formula,
family = cph$family,
data = c(as.list(cph$data), cph$data.list),
contrasts = contrasts,
quantiles=quantiles,
E = cph$E,
## these should be expanded as well??? Will give an error...
offset= offset,
scale = scale,
weights = inla.ifelse(missing(weights) || (exists("weights") && is.function(weights)), NULL, weights),
##
Ntrials = NULL, # Not used for the poisson
strata = NULL, # Not used for the poisson
lincomb = lincomb,
verbose = verbose,
control.compute = control.compute,
control.predictor = control.predictor,
control.family = control.family,
control.inla = control.inla,
control.results = control.results,
control.fixed = control.fixed,
control.mode = control.mode,
control.expert = control.expert,
control.hazard = control.hazard,
control.lincomb = control.lincomb,
control.update = control.update,
only.hyperparam = only.hyperparam,
inla.call = inla.call,
inla.arg = inla.arg,
num.threads = num.threads,
keep = keep,
working.directory = working.directory,
silent = silent,
debug = debug)
## replace the argument so it can be reused, if...
result$call.orig = deparse(match.call())
return (result)
}
## this is nice hack ;-) we keep the original response. then we
## delete it from 'data' keeping a copy of the original one
y...orig = eval(parse(text=formula[2]), data)
if (n.family > 1) {
y...orig = inla.as.list.of.lists(y...orig)
ny = max(sapply(y...orig, function(xx) if (is.list(xx)) max(sapply(xx, length)) else length(xx)))
nc = length(y...orig)
if (n.family != nc)
stop(paste("Number of families", n.family, "does not match number of response variables", nc))
} else {
nc = NULL ## not in use
if (inherits(y...orig, "inla.surv")) {
class(y...orig) = NULL
ny = max(sapply(y...orig, length))
} else {
if (length(dim(y...orig)) == 2) {
## some matrix type, could be a sparse matrix
stopifnot(dim(y...orig)[2] == 1)
y...orig = c(drop(as.matrix(y...orig)))
}
ny = length(y...orig)
}
}
data = inla.remove(as.character(formula[2]), data)
if (!is.null(control.predictor$A)) {
MN = inla.sparse.dim(control.predictor$A)
MPredictor = MN[1]
NPredictor = MN[2]
stopifnot(MPredictor == ny)
} else {
MPredictor = 0L
NPredictor = ny
}
NData = inla.ifelse(MPredictor > 0, MPredictor, NPredictor)
stopifnot(NData > 0)
stopifnot(NPredictor > 0)
if (debug) {
print(paste("MPredictor", MPredictor))
print(paste("NPredictor", NPredictor))
print(paste("NData", NPredictor))
}
if (n.family == 1) {
y...fake = c(rep(Inf, NData))
if (debug)
print(paste("y...fake has length", length(y...fake)))
} else {
y...fake = c(rep(Inf, NData))
if (debug)
print(paste("y...fake has length", length(y...fake)))
}
if (FALSE) {
if (n.family != 1)
stop(paste("length(family) are", n.family, "but the response has only one column!"))
y...fake = c(y...orig)
y...fake[is.na(y...fake)] = Inf ## otherwise model.matrix() fails below
}
if (debug) {
cat("n.family", n.family, "\n")
}
## ...and then we add the fake to the data-frame after removing the original response
if (is.data.frame(data)) {
if (MPredictor > 0) {
if (MPredictor != NPredictor) {
stop(paste("It can be ``dangerous'' to use a 'data.frame' as data, when the\n",
"\tA-matrix is not a square matrix; please pass the data\n",
"\tas a list: data = list(...)."))
}
}
data = as.data.frame(c(as.data.frame(data), list(y...fake=y...fake)))
} else {
data = c(data, list(y...fake=y...fake))
if (MPredictor > 0 && (MPredictor > NPredictor)) {
data$y...fake = data$y...fake[1:NPredictor]
}
if (MPredictor > 0 && (MPredictor < NPredictor)) {
data$y...fake = c(data$y...fake, rep(Inf, NPredictor - MPredictor))
}
}
data.same.len = inla.fix.data(data, NPredictor)
if (debug) {
print(c("Entries with same length:", names(data.same.len)))
}
## creates a new version of ``formula'' and keep the old one for reference
formula.orig = formula
##inla.eval(paste("formula = y...fake ~ ", inla.formula2character(formula.orig[3])))
formula = update.formula(formula, y...fake ~ .)
## parse the formula
gp = inla.interpret.formula(formula, data.same.len=data.same.len, data=data,
data.model = data.model, parent.frame = .parent.frame)
call = deparse(match.call())
## issue a warning if the intercept is spesified while the
## control.predictor A matrix is used.
if (length(grep("\\+ ?1($| )", gp$fixf)) && !is.null(control.predictor$A)) {
warning("The A-matrix in the predictor (see ?control.predictor) is specified
but an intercept is in the formula. This will likely result
in the intercept being applied multiple times in the model, and is likely
not what you want. See ?inla.stack for more information.
You can remove the intercept adding ``-1'' to the formula.")
}
if (gp$n.fix > 0) {
## use y...fake also here (which is the same as in gp$fixf[2])
## and construct the model.matrix().
new.fix.formula = gp$fixf
##inla.eval(paste("new.fix.formula = y...fake ~ ", inla.formula2character(gp$fixf[3])))
new.fix.formula = update.formula(new.fix.formula, y...fake ~ .)
## replace NA's in covariates with 0. Ignore factors. NA's in
## factors is done afterwards.
inla.na.action = function(x, ...) {
for(k in seq_along(x)) {
if ((is.numeric(x[[k]]) || inla.is.matrix(x[[k]])) && !is.factor(x[[k]])) {
x[[k]][is.na(x[[k]])] = 0
}
}
return (na.pass(x))
}
if (inla.one.of(cont.fixed$expand.factor.strategy, "inla")) {
## expand all factors as matrices, exclude possible
## factors in the f()'s. it is ok to include all terms in
## the f()'s as duplicated names are not allowed.
exclude.names = c()
for (k in seq_along(gp$random.spec)) {
exclude.names = c(exclude.names, gp$random.spec[[k]]$label)
}
data.same.len = inla.expand.factors(data.same.len, exclude.names)
} else if (inla.one.of(cont.fixed$expand.factor.strategy, "model.matrix")) {
## do nothing
} else {
stop(paste("Unknown value for flag 'expand.factor.strategy' in 'control.fixed':",
cont.fixed$expand.factor.strategy))
}
gp$model.matrix = model.matrix(new.fix.formula,
data=model.frame(new.fix.formula, data.same.len, na.action=inla.na.action),
contrasts.arg = contrasts)
## as NA's in factors are not set to zero in
## 'inla.na.action'. Do that here if the strategy is 'inla',
## otherwise signal an error.
if (any(is.na(gp$model.matrix))) {
if (inla.one.of(cont.fixed$expand.factor.strategy, "inla")) {
gp$model.matrix[is.na(gp$model.matrix)] = 0
} else {
stop(paste("With control.fixed = list(expand.factor.strategy='model.matrix'),",
"then NA's in factor are not allowd. Please use strategy 'inla' instead."))
}
}
## this have to match
stopifnot(dim(gp$model.matrix)[1L] == NPredictor)
if (any(is.infinite(gp$model.matrix))) {
n.infs = sum(is.infinite(gp$model.matrix))
stop(paste("There are", n.infs, "Inf's in the model.matrix. This is not allowed."))
}
## n.fix can have been changed here due to a `-1'
gp$n.fix = dim(gp$model.matrix)[2L]
## if reqested, then setup the fixed effects as linear
## combinations, so we can compute their posterior correlation
## matrix. so the lincombs are 'inla.make.lincomb(z=1)'
## etc. we need the quotes \"..\" for the "(Intercept)".
if (!is.null(control.fixed$correlation.matrix) &&
control.fixed$correlation.matrix && !is.null(gp$model.matrix)) {
fix.names = colnames(gp$model.matrix)
lc.all.fix = c()
for(fix.name in fix.names) {
lc.fix = inla.eval(paste("inla.make.lincomb(\"", fix.name,"\"=1)", sep=""))
names(lc.fix) = fix.name
lc.all.fix = c(lc.all.fix, lc.fix)
}
## if we have defined lincomb's also in the inla call,
## then simply append the fixed-effects at the end,
## otherwise set the 'lincomb' argument. however. for this
## to work with repeated calls (like inla.hyperpar()) we
## have to turn off control.fixed$correlation.matrix as we
## have moved that part into 'lincomb'. also, we need to
## make sure that we actually compute the correlation
## matrix for the linear combinations in control.inla$...
lincomb = c(lincomb, lc.all.fix)
control.fixed$correlation.matrix = FALSE
control.inla$lincomb.derived.correlation.matrix = TRUE
}
} else {
gp$model.matrix = NULL
}
## control what should be computed
cont.compute = inla.set.control.compute.default()
cont.compute[names(control.compute)] = control.compute
if (only.hyperparam) {
cont.compute$hyperpar = TRUE
cont.compute$dic = cont.compute$cpo = cont.compute$po = cont.compute$waic = FALSE
}
## control predictor section
cont.predictor = inla.set.control.predictor.default()
cont.predictor[names(control.predictor)] = control.predictor
cont.predictor$hyper = inla.set.hyper("predictor", "predictor",
cont.predictor$hyper, cont.predictor$initial,
cont.predictor$fixed, cont.predictor$prior, cont.predictor$param)
all.hyper$predictor$hyper = cont.predictor$hyper
if (cont.compute$cpo || cont.compute$dic || cont.compute$po || cont.compute$waic || !is.null(cont.predictor$link))
cont.predictor$compute=TRUE
if (only.hyperparam) {
cont.predictor$compute = cont.predictor$return.marginals = FALSE
cont.predictor$cdf = cont.predictor$quantiles = NULL
}
## control inla
cont.inla =inla.set.control.inla.default(family=family)
cont.inla[names(control.inla)] = control.inla
## control.family
control.family.orig = control.family
if (n.family == 1) {
if (!missing(control.family) && (inla.is.list.of.lists(control.family) && length(control.family) > 1L))
stop(paste("Argument 'control.family' does not match length(family)=", n.family))
} else {
if (!missing(control.family) && !(inla.is.list.of.lists(control.family) && length(control.family) == n.family))
stop(paste("Argument 'control.family' does not match length(family)=", n.family))
}
if (missing(control.family)) {
tt = list(list())
for(i in 1:n.family)
tt[[i]] = control.family
control.family = tt
} else if (n.family == 1) {
control.family = list(control.family)
}
if (length(control.family) == 1 && n.family > 1)
stop(paste("length(control.family) = 1 while length(family) > 1."))
## finally, do the check. Note that the name of the argument is
## also used in this function, so we need to borrow the name.
control.family.save = control.family
for(ii in 1:n.family) {
control.family = control.family.save[[ii]]
control.family.save[[ii]] = inla.check.control(control.family, data)
}
control.family = control.family.save
cont.family = list(list())
for(i.family in 1:n.family) {
cont.family[[i.family]] = inla.set.control.family.default()
cont.family[[i.family]]$control.mix = inla.set.control.mix.default()
cont.family[[i.family]]$control.link = inla.set.control.link.default()
## need to take option 'control.mix' and 'control.link' out and process it seperately
c.mix = control.family[[i.family]]$control.mix
c.link = control.family[[i.family]]$control.link
control.family[[i.family]]$control.mix = NULL
control.family[[i.family]]$control.link = NULL
cont.family[[i.family]][names(control.family[[i.family]])] = control.family[[i.family]]
cont.family[[i.family]]$hyper = inla.set.hyper(
family[i.family],
"likelihood",
cont.family[[i.family]]$hyper,
cont.family[[i.family]]$initial,
cont.family[[i.family]]$fixed,
cont.family[[i.family]]$prior,
cont.family[[i.family]]$param)
all.hyper$family[[i.family]] = list(
label = family[i.family],
hyper = cont.family[[i.family]]$hyper)
cont.family[[i.family]]$control.mix[names(c.mix)] = c.mix
cont.family[[i.family]]$control.link[names(c.link)] = c.link
if (!is.null(cont.family[[i.family]]$control.mix$model)) {
cont.family[[i.family]]$control.mix$hyper = inla.set.hyper(
cont.family[[i.family]]$control.mix$model,
"mix",
cont.family[[i.family]]$control.mix$hyper,
cont.family[[i.family]]$control.mix$initial,
cont.family[[i.family]]$control.mix$fixed,
cont.family[[i.family]]$control.mix$prior,
cont.family[[i.family]]$control.mix$param)
all.hyper$family[[i.family]]$mix$hyper= cont.family[[i.family]]$control.mix$hyper
}
cont.family[[i.family]]$control.link$hyper = inla.set.hyper(
cont.family[[i.family]]$control.link$model,
"link",
cont.family[[i.family]]$control.link$hyper,
cont.family[[i.family]]$control.link$initial,
cont.family[[i.family]]$control.link$fixed,
cont.family[[i.family]]$control.link$prior,
cont.family[[i.family]]$control.link$param)
all.hyper$family[[i.family]]$link$hyper = cont.family[[i.family]]$control.link$hyper
}
## control results
cont.results = inla.set.control.results.default()
cont.results[names(control.results)] = control.results
## Create the directory where to store Model.ini and data.files
## and results.file
if (!is.null(working.directory))
keep=TRUE
if (keep) {
##create the directory locally or whereever specified by the user
if (is.null(working.directory)) {
working.directory="inla.model"
working.directory.start="inla.model"
} else {
working.directory.start= working.directory
}
## if this directory already exists, try the numbered versions
kk=1
ans=file.exists(working.directory)
while(ans) {
working.directory=paste(working.directory.start,"-", kk, sep="")
kk=kk+1
ans=file.exists(working.directory)
}
inla.dir=working.directory
tmp = inla.dir.create(inla.dir, StopOnError = FALSE) ## return NULL if fail
if (is.null(tmp)) {
## this is the failsafe-option
inla.dir = paste(inla.dir, "-", substring(as.character(runif(1)), 3), sep="")
tmp = inla.dir.create(inla.dir, StopOnError = FALSE)
if (is.null(tmp)) {
stop(paste("Cannot create directory [", inla.dir,
"] even after trying a random dirname. I give up.", sep=""))
}
}
cat("Model and results are stored in working directory [", inla.dir,"]\n", sep="")
} else {
##create a temporary directory
inla.dir=inla.tempfile()
inla.dir=gsub("\\\\", "/", inla.dir)
inla.dir.create(inla.dir)
}
## Create a directory where to store data and results
data.dir=paste(inla.dir, "/data.files", sep="")
results.dir = paste(inla.dir, "/results.files", sep="")
inla.dir.create(data.dir)
## create the .file.ini and make the problem.section
file.ini = paste(inla.dir, "/Model.ini", sep="")
file.log = paste(inla.dir, "/Logfile.txt", sep="")
## problem section
if (debug)
print("prepare problem section")
inla.problem.section(file = file.ini, data.dir = data.dir, result.dir = results.dir,
hyperpar = cont.compute$hyperpar, return.marginals = cont.compute$return.marginals,
dic = cont.compute$dic, mlik = cont.compute$mlik,
cpo = cont.compute$cpo,
## these two are merged together as they are compute together
po = (cont.compute$po || cont.compute$waic),
quantiles = quantiles, smtp = cont.compute$smtp, q = cont.compute$q,
openmp.strategy = cont.compute$openmp.strategy, graph = cont.compute$graph,
config = cont.compute$config, gdensity = cont.compute$gdensity)
## PREPARE RESPONSE AND FIXED EFFECTS
if (debug)
cat("Prepare inla file.....")
## copy the argument-lists
mf = match.call(expand.dots = FALSE)
mf$family = NULL; mf$quantiles=NULL;
mf$verbose = NULL; mf$control.compute = NULL; mf$control.predictor = NULL; mf$silent = NULL; mf$control.hazard=NULL;
mf$control.family = NULL; mf$control.update = NULL;
mf$control.inla = NULL; mf$control.results = NULL; mf$control.fixed = NULL; mf$control.lincomb=NULL;
mf$control.mode = NULL; mf$control.expert = NULL; mf$inla.call = NULL; mf$num.threads = NULL; mf$keep = NULL;
mf$working.directory = NULL; mf$only.hyperparam = NULL; mf$debug = NULL; mf$contrasts = NULL;
mf$inla.arg = NULL; mf$lincomb=NULL; mf$.parent.frame = NULL;
mf$data = data.same.len
if (gp$n.fix > 0)
mf$formula = gp$fixf
else if (gp$n.random > 0)
mf$formula = gp$randf
else
mf$formula = y...fake ~ 1
## these we need
mf$na.action = na.pass
mf[[1]] = as.name("model.frame")
if (gp$n.random > 0) {
rf = mf ## for later use
rf$weights = rf$scale = rf$Ntrials = rf$offset = rf$E = rf$strata = rf$link.covariates = NULL ## these we do not need
rf$formula = gp$randf
rf$data = data.same.len
rf = eval.parent(rf)
} else {
rf = NULL
}
if (gp$n.weights > 0) {
wf = mf
wf$weights = wf$scale = wf$Ntrials = wf$offset = wf$E = wf$strata = wf$link.covariates = NULL ## these we do not need
wf$formula = gp$weightf
wf$data = data.same.len
wf = eval.parent(wf)
} else {
wf = NULL
}
## We set these here, instead of::
## scale = model.extract(mf, "scale")
## Ntrials = model.extract(mf, "Ntrials")
## E = model.extract(mf, "E")
## offset = as.vector(model.extract(mf, "offset"))
for (nm in c("scale", "weights", "Ntrials", "offset", "E", "strata", "link.covariates")) {
inla.eval(paste("tmp = try(eval(mf$", nm, ", data), silent=TRUE)", sep=""))
if (!is.null(tmp) && !inherits(tmp, "try-error")) {
inla.eval(paste("mf$", nm, " = NULL", sep=""))
inla.eval(paste(nm, " = tmp"))
} else {
inla.eval(paste("tmp = try(eval.parent(mf$", nm, "), silent=TRUE)", sep=""))
if (!is.null(tmp) && !inherits(tmp, "try-error")) {
inla.eval(paste("mf$", nm, " = NULL", sep=""))
inla.eval(paste(nm, " = tmp"))
} else {
## this *is* defined by default, as all variables are default NULL
inla.eval(paste("mf$", nm, " = NULL", sep=""))
inla.eval(paste(nm, "= inla.eval(nm)", sep=""))
}
}
}
## as there are functions as well with this name....
if (is.function(offset))
offset = NULL
if (is.function(scale))
scale = NULL
## ## ## ## ## ## ## ## ## ## ## ##
## ## ## ## ## ## ## ## ## ## ## ##
mf = eval.parent(mf)
indN = seq(0L, NPredictor-1L)
indM = seq(0L, MPredictor-1L)
indD = seq(0L, NData-1)
## this takes care of the offset: `offset' is the argument,
## `offset.formula' is in the formula. Note that 'offset' goes
## into eta* = A %*% eta + offset, whereas, eta = .... +
## offset.formula
if (!is.null(gp$offset)) {
## there can be more offsets
offset.formula = 0
for(i in 1:length(gp$offset)) {
offset.formula = offset.formula + as.vector(eval(parse(text=gp$offset[i]), data))
}
} else {
offset.formula = rep(0, NPredictor)
}
offset.len = inla.ifelse(MPredictor > 0, MPredictor, NPredictor)
offset.formula.len = NPredictor
if (is.null(offset)) {
offset = 0
}
if (length(offset) == 1L) {
offset = rep(offset, offset.len)
}
if (length(offset) != offset.len) {
stop(paste("Length of argument 'offset' is wrong:", length(offset), "!=", offset.len))
}
if (length(offset.formula) != offset.formula.len) {
stop(paste("Length of 'offset(...)' in the formula is wrong:", length(offset.formula), "!=", offset.formula.len))
}
if (length(family) == 1)
family = rep(family, n.family)
## Create a file with the response, each for each 'family'
for(i.family in 1:n.family) {
if (n.family == 1)
yy = y...orig
else
yy = y...orig[[i.family]]
if (MPredictor > 0) {
if (is.list(yy)) {
stopifnot(max(sapply(yy, length)) == MPredictor)
} else if (inla.is.matrix(yy)) {
stopifnot(dim(yy)[1L] == MPredictor)
} else {
stopifnot(length(yy) == MPredictor)
}
}
if (!is.null(yy) && !(is.numeric(yy) || is.list(yy) || is.matrix(yy) || inla.is.matrix(yy) || all(is.na(yy)))) {
stop(paste("The response for family[", i.family, "] is not of type 'numeric|list|matrix'; don't know what to do.", sep=""))
}
files = inla.create.data.file(y.orig= yy, mf=mf, E=E, scale=scale,
weights=weights, Ntrials=Ntrials, strata=strata,
family=family[i.family], data.dir=data.dir, file=file.ini, debug=debug)
## add a section to the file.ini
prop = inla.model.properties(family[i.family], "likelihood", stop.on.error=TRUE)
if (debug)
print("prepare data section")
##....then create the new section
inla.family.section(file=file.ini, family=family[[i.family]], file.data=files$file.data, file.weights=files$file.weights,
control=cont.family[[i.family]], i.family=i.family, link.covariates = link.covariates, data.dir = data.dir)
}
##create the PREDICTOR section.
if (debug)
print("prepare predictor section")
stopifnot(!is.null(offset.formula) && !is.null(offset)) ## must be zeros if not used. this makes it easier
offset.formula[is.na(offset.formula)] = 0
offset[is.na(offset)] = 0
if (!is.null(control.predictor$A)) {
off = cbind(c(indM, MPredictor + indN), c(as.vector(control.predictor$A %*% offset.formula + offset), offset.formula))
} else {
off = cbind(indN, offset + offset.formula)
}
file.offset = inla.tempfile(tmpdir=data.dir)
if (inla.getOption("internal.binary.mode")) {
inla.write.fmesher.file(as.matrix(off), filename=file.offset, debug = debug)
} else {
file.create(file.offset)
write(t(off), ncolumns=2L, file=file.offset, append=FALSE)
}
file.offset = gsub(data.dir, "$inladatadir", file.offset, fixed=TRUE)
if (!is.null(cont.predictor$link)) {
not.na = which(!is.na(cont.predictor$link))
if (any(cont.predictor$link[not.na] != as.integer(cont.predictor$link[not.na])) || !all(cont.predictor$link[not.na] %in% 1L:n.family))
stop(paste("Argument 'control.predictor$link' must consist of integers from the set 1:", n.family, " or NA's.", sep=""))
if (!all(is.na(cont.predictor$link))) {
if (max(cont.predictor$link[not.na]) > n.family) {
stop(paste("n.family =", n.family, "while argument 'control.predictor$link' has max=", max(cont.predictor$link[not.na])))
}
}
if (!is.null(control.predictor$A)) {
if (length(cont.predictor$link) == 1L) {
## shortcut
cont.predictor$link = rep(cont.predictor$link, MPredictor)
}
if (!(length(cont.predictor$link) == MPredictor || length(cont.predictor$link) == MPredictor + NPredictor)) {
stop(paste("Length of argument 'control.predictor$link' is wrong: length(link) = ",
length(cont.predictor$link), ". Length must be equal to ",
"length(A%*%eta)=", MPredictor, " or length(c(A%*%eta,eta))=", MPredictor + NPredictor,
".", sep=""))
}
if (length(cont.predictor$link) == MPredictor) {
tlink = cbind(0L:(MPredictor + NPredictor -1L), c(cont.predictor$link -1L, rep(NA, NPredictor)))
} else {
tlink = cbind(0L:(MPredictor + NPredictor -1L), cont.predictor$link - 1L)
}
} else {
if (length(cont.predictor$link) == 1L) {
## shortcut
cont.predictor$link = rep(cont.predictor$link, NPredictor)
}
if (!(length(cont.predictor$link) == NPredictor)) {
stop(paste("Length of argument 'control.predictor$link' is wrong: length(link)=", length(control.predictor$link),
". Length must be equal to ",
"length(eta)=", NPredictor, ".", sep=""))
}
stopifnot(length(cont.predictor$link) == NPredictor)
tlink = cbind(indN, as.numeric(cont.predictor$link) -1L)
}
file.link.fitted.values = inla.tempfile(tmpdir=data.dir)
if (inla.getOption("internal.binary.mode")) {
inla.write.fmesher.file(as.matrix(tlink), filename=file.link.fitted.values, debug = debug)
} else {
file.create(file.link.fitted.values)
write(t(tlink), ncolumns=2L, file=file.offset, append=FALSE)
}
file.link.fitted.values = gsub(data.dir, "$inladatadir", file.link.fitted.values, fixed=TRUE)
} else {
file.link.fitted.values = NULL
}
inla.predictor.section(file=file.ini, n=NPredictor, m=MPredictor,
predictor.spec=cont.predictor, file.offset=file.offset, data.dir = data.dir,
file.link.fitted.values = file.link.fitted.values)
all.labels = character(0)
if (!is.null(cont.predictor$compute) && cont.predictor$compute)
all.labels = c(all.labels,"predictor")
## FIXED EFFECTS
if (gp$n.fix >0) {
nc = ncol(gp$model.matrix)
labels = colnames(gp$model.matrix)
for(i in 1:nc) {
if (debug)
cat("write label[", labels[i],"]\n")
fixed.eff=cbind(indN, as.numeric(gp$model.matrix[, i]))
##remove lines with NA
fixed.eff = fixed.eff[!is.na(fixed.eff[, 2]),, drop=FALSE]
file.fixed=inla.tempfile(tmpdir=data.dir)
if (inla.getOption("internal.binary.mode")) {
inla.write.fmesher.file(as.matrix(fixed.eff), filename = file.fixed, debug=debug)
} else {
file.create(file.fixed)
write(t(fixed.eff), ncolumns=ncol(fixed.eff), file=file.fixed, append=FALSE)
}
file.fixed = gsub(data.dir, "$inladatadir", file.fixed, fixed=TRUE)
if (debug)
cat("file fixed", file.fixed,"\n")
all.hyper$fixed[[i]] =
inla.linear.section(file=file.ini, file.fixed=file.fixed, label=labels[i],
results.dir=paste("fixed.effect", inla.num(i), sep=""),
control.fixed=cont.fixed, only.hyperparam=only.hyperparam)
}
}
##RANDOM EFFECT OR LINEAR EFFCT DEFINED VIA f()
nr=gp$n.random
n.weights=0
j=0
extra.fixed=0
rgeneric = list()
nrgeneric = 0
if (nr>0) {
name.random.dir=c()
if (nr!=(ncol(rf)-1))
stop("\n\tSOMETHING STRANGE: You probably used one variable as a covariate more than once.")
## make the covariate numeric if its all NA (for which it is of type 'logical')
stopifnot(ncol(rf) >= 2L)
for(r in 1:(ncol(rf)-1)) { ## YES, '-1' is correct
idx = rf[, r+1]
if (is.logical(idx) && all(is.na(idx))) {
rf[, r+1] = idx = as.numeric(idx)
}
if (all(is.na(idx))) {
## check that either 'n' or 'values' are given, to prevent errors from happening
## below.
if (is.null(gp$random.spec[[r]]$values) && is.null(gp$random.spec[[r]]$n)) {
stop(paste("Model component 'f(",
gp$random.spec[[r]]$term,
", ...)' have only NA values in '",
gp$random.spec[[r]]$term, "'. ",
"In this case, ",
"either argument 'n' or 'values' must be spesified.", sep=""))
}
}
}
location = list()
covariate = list()
count.linear = 0
count.random = 0
## sort the models so copies are at the end
if (nr > 1) {
swapped = TRUE
while (swapped) {
swapped = FALSE
for(r in 1:(nr-1)) {
if (
##
## not both are copy, then copy is at the end
##
(gp$random.spec[[r]]$model == "copy" && gp$random.spec[[r+1]]$model != "copy") ||
##
## both are copy, then 'same.as' is at the end
##
(gp$random.spec[[r]]$model == "copy" && gp$random.spec[[r+1]]$model == "copy" &&
!is.null(gp$random.spec[[r]]$same.as) && is.null(gp$random.spec[[r+1]]$same.as))) {
tmp = gp$random.spec[[r]]
gp$random.spec[[r]] = gp$random.spec[[r+1]]
gp$random.spec[[r+1]] = tmp
tmp = rf[, r+1]
rf[, r+1] = rf[, r+2]
rf[, r+2] = tmp
swapped = TRUE
}
}
}
}
if (debug) {
for(r in 1:nr)
print(paste(r, gp$random.spec[[r]]$model, gp$random.spec[[r]]$of))
}
all.terms = c()
for(r in 1:nr)
all.terms = c(all.terms, gp$random.spec[[r]]$term)
for (r in 1:nr) {
n = nrep = ngroup = N = NULL
if (gp$random.spec[[r]]$model == "rgeneric") {
## collect it and give it an Id
nrgeneric = nrgeneric + 1L
rgeneric[[nrgeneric]] = gp$random.spec[[r]]$rgeneric
gp$random.spec[[r]]$rgeneric$Id = nrgeneric
}
if (gp$random.spec[[r]]$model != "linear") {
##in this case we have to add a FFIELD section.........
count.random = count.random+1
xx=rf[, r +1]
## Do some checking for 'copy', which might lead
## to some strange errors if not met. Its OK to
## check these here as we already have sorted the
## fields.
## if copy, then make sure that some critical variables are the same
if (gp$random.spec[[r]]$model == "copy") {
r.idx = which(all.terms == gp$random.spec[[r]]$of)
if (length(r.idx) == 0)
stop(paste("Something wrong: cannot find the match of copy='", gp$random.spec[[r]]$of, "'", sep=""))
gp$random.spec[[r]]$ngroup = gp$random.spec[[r.idx]]$ngroup
gp$random.spec[[r]]$nrep = gp$random.spec[[r.idx]]$nrep
gp$random.spec[[r]]$n = gp$random.spec[[r.idx]]$n
gp$random.spec[[r]]$values = gp$random.spec[[r.idx]]$values
}
if (!is.null(gp$random.spec[[r]]$nrep)) {
nrep = as.integer(gp$random.spec[[r]]$nrep)
} else {
if (!is.null(gp$random.spec[[r]]$replicate)) {
nrep = as.integer(max(gp$random.spec[[r]]$replicate, na.rm=TRUE))
} else {
nrep = 1
}
}
if (!is.null(gp$random.spec[[r]]$ngroup)) {
ngroup = as.integer(gp$random.spec[[r]]$ngroup)
} else {
if (!is.null(gp$random.spec[[r]]$group)) {
ngroup = as.integer(max(gp$random.spec[[r]]$group, na.rm = TRUE))
} else {
ngroup = 1
}
}
if (nrep > 1 || ngroup > 1) {
if (is.null(gp$random.spec[[r]]$n)) {
if (is.factor(xx)) {
n = length(unique(xx[!is.na(xx)]))
} else {
if (!is.null(gp$random.spec[[r]]$values))
n = length(unique(gp$random.spec[[r]]$values[ !is.na(gp$random.spec[[r]]$values) ]))
else
n = length(unique(xx[!is.na(xx)]))
}
gp$random.spec[[r]]$n = n
} else {
n = gp$random.spec[[r]]$n
}
##warning(paste("inla: I do not think `n' is required to give...; compute n=", n))
N = inla.model.properties(gp$random.spec[[r]]$model, "latent")$aug.factor * n
replicate = gp$random.spec[[r]]$replicate
if (is.null(replicate))
replicate = rep(1, length(xx))
group = gp$random.spec[[r]]$group
if (is.null(group))
group = rep(1, length(xx))
if (nrep > 1) {
## if replicate is a single number, then reuse
if (length(replicate) == 1)
replicate = rep(replicate, length(xx))
if (length(replicate) != length(xx))
stop(paste("length(replicate) != length(xx)", length(replicate), "!=", length(xx)))
if (!all(is.element(replicate, 1:nrep) | is.na(replicate)))
stop(paste("Error in the values of `replicate'; not in [1,...,", nrep,"]", sep=""))
if (any(is.na(replicate[ !is.na(xx) ])))
stop(paste("There are one or more NA's in 'replicate' where 'idx' in f(idx,...) is not NA: idx = \'",
gp$random.spec[[r]]$term, "\'", sep=""))
replicate[ is.na(xx) ] = 1
}
if (ngroup > 1) {
## if group is a single number, then reuse
if (length(group) == 1)
group = rep(group, length(xx))
if (length(group) != length(xx))
stop(paste("length(group) != length(xx)", length(group), "!=", length(xx)))
if (!all(is.element(group, 1:ngroup) | is.na(group)))
stop(paste("Error in the values of `group'; not in [1,...,", ngroup,"]", sep=""))
if (any(is.na( group[ !is.na(xx) ])))
stop(paste("There are one or more NA's in 'group' where 'idx' in f(idx,...) is not NA: idx = \'",
gp$random.spec[[r]]$term, "\'", sep=""))
group[ is.na(xx) ] = 1
}
} else {
N = NULL
}
NG = N*ngroup
## might be used for plotting etc...
gp$random.spec[[r]]$N = N
gp$random.spec[[r]]$NG = NG
gp$random.spec[[r]]$NREP = NREP = nrep
## make sure these are set so they will be used by the `copy'-feature
if (is.null(gp$random.spec[[r]]$n)) {
gp$random.spec[[r]]$n = n
}
gp$random.spec[[r]]$ngroup = ngroup
gp$random.spec[[r]]$nrep = nrep
if (nrep > 1 || ngroup > 1) {
if (is.null(replicate))
stop("replicate is NULL")
if (is.null(group))
stop("group is NULL")
}
if (!is.null(gp$random.spec[[r]]$values)) {
## in any case they must be unique:
if (length(gp$random.spec[[r]]$values) != length(unique(gp$random.spec[[r]]$values))) {
stop(paste("The 'values' given in f(",
gp$random.spec[[r]]$term, ",..., values=...) are not unique:\n",
" length(values)=", length(gp$random.spec[[r]]$values),
" but length(unique(values))=", length(unique(gp$random.spec[[r]]$values)),
sep=""))
}
## values are given. then either both must be numeric or a factor, or factor x character
if (is.numeric(xx) && is.numeric(gp$random.spec[[r]]$values)) {
## case 1: both numeric
## no sort for values here, since they are given as they should be !!!!
location[[r]] = unique(gp$random.spec[[r]]$values)
cov = match(xx, location[[r]])-1L + inla.ifelse(nrep > 1L || ngroup > 1L, (replicate-1L)*NG + (group-1)*N, 0L)
## check that not do anything we will regret
i.cov = is.na(match(xx, location[[r]]))
i.xx = is.na(xx)
if (!all(i.cov == i.xx)) {
stop(paste("f(", gp$random.spec[[r]]$term, "). Covariate does not match 'values' ",
sum(i.cov != i.xx), " times. Indexes for mismatch:", inla.paste(which(i.cov != i.xx)),
". This is not what you want. Use NA values in the covariate!",
sep=""))
}
cov[is.na(cov)] = -1L
covariate[[r]] = cov
} else if ((is.factor(xx) || is.character(xx))
&&
(is.factor(gp$random.spec[[r]]$values) || is.character(gp$random.spec[[r]]$values))) {
## case 2: both factors or character's
if (is.character(xx)) {
## convert to factor (easier)
xx = factor(xx, unique(xx))
}
if (is.character(gp$random.spec[[r]]$values)) {
## convert it to a factor
gp$random.spec[[r]]$values = factor(gp$random.spec[[r]]$values, gp$random.spec[[r]]$values)
}
gp$random.spec[[r]]$id.names = levels(gp$random.spec[[r]]$values)
location[[r]] = 1L:length(levels(gp$random.spec[[r]]$values))
## let us first check if there are levels in
## xx that is not present in values. this
## should not happen as NA's should be used
## instead
if (length(setdiff(levels(xx), gp$random.spec[[r]]$values)) != 0L) {
dif = setdiff(levels(xx), levels(gp$random.spec[[r]]$values))
stop(paste("In f(", gp$random.spec[[r]]$term, "): Covariate does not match 'values' ",
length(dif), " times. Levels that mismatch:", inla.paste(c(dif), sep=" "),
".\n This is not what you want. Use NA values in the covariate!",
sep=""))
}
cov = match(xx, levels(gp$random.spec[[r]]$values)) -1L
cov[is.na(cov)] = -1L
covariate[[r]] = cov
} else {
## all combinations not covered above is not allowed.
stop(paste("In f(", gp$random.spec[[r]]$term, "): 'covariate' must match 'values'",
", and both must either be 'numeric', or 'factor'/'character'.", sep=""))
}
} else {
## values are not given. then 'values' depends on the type of the covariate.
if (is.factor(xx)) {
gp$random.spec[[r]]$id.names = levels(xx)
location[[r]] = 1L:length(levels(xx))
xx = as.numeric(xx)
} else if (is.character(xx)) {
gp$random.spec[[r]]$id.names = levels(as.factor(xx))
location[[r]] = 1L:length(levels(as.factor(xx)))
xx = as.numeric(sapply(xx, function(xx.i, id.names) which(xx.i == id.names), id.names = gp$random.spec[[r]]$id.names))
} else if (is.numeric(xx)) {
gp$random.spec[[r]]$id.names = NULL
location[[r]] = sort(unique(xx))
## need to store the mapping for later use
} else {
stop(paste("f(", gp$random.spec[[r]]$term, "). Covariate is not of type 'factor', 'character' or 'numeric'.", sep=""))
}
cov = match(xx, location[[r]])-1L + inla.ifelse(nrep > 1L || ngroup > 1L, (replicate-1L)*NG + (group-1L)*N, 0L)
## check that we do not do anything we will regret
i.cov = is.na(match(xx, location[[r]]))
i.xx = is.na(xx)
if (!all(i.cov == i.xx)) {
stop(paste("f(", gp$random.spec[[r]]$term, "). Covariate does not match 'values' ",
sum(i.cov != i.xx), " times. Indexes for mismatch:", inla.paste(which(i.cov != i.xx)),
". This is not what you want. Use NA values in the covariate!",
sep=""))
}
cov[is.na(cov)] = -1L
covariate[[r]] = cov
}
## just make sure this is all set
if (is.null(gp$random.spec[[r]]$values)) {
gp$random.spec[[r]]$values = location[[r]]
}
## create a location and covariate file
file.loc=inla.tempfile(tmpdir=data.dir)
if (inla.getOption("internal.binary.mode")) {
inla.write.fmesher.file(as.matrix(as.numeric(location[[r]]), ncol = 1), filename = file.loc, debug = debug)
} else {
file.create(file.loc)
write(as.numeric(location[[r]]), ncolumns=1, file=file.loc, append=FALSE)
}
file.loc = gsub(data.dir, "$inladatadir", file.loc, fixed=TRUE)
## this have to match
stopifnot(length(covariate[[r]]) == NPredictor)
file.cov=inla.tempfile(tmpdir=data.dir)
if (inla.getOption("internal.binary.mode")) {
inla.write.fmesher.file(as.matrix(cbind(indN, covariate[[r]])), filename=file.cov, debug = debug)
} else {
file.create(file.cov)
write(t(cbind(indN, covariate[[r]])), ncolumns=2, file=file.cov, append=FALSE)
}
file.cov = gsub(data.dir, "$inladatadir", file.cov, fixed=TRUE)
## name of the 'names of the values'
if (!is.null(gp$random.spec[[r]]$id.names)) {
file.id.names = inla.tempfile(tmpdir=data.dir)
inla.writeLines(file.id.names, gp$random.spec[[r]]$id.names)
file.id.names = gsub(data.dir, "$inladatadir", file.id.names, fixed=TRUE)
} else {
file.id.names = NULL
}
file.cov=inla.tempfile(tmpdir=data.dir)
if (inla.getOption("internal.binary.mode")) {
inla.write.fmesher.file(as.matrix(cbind(indN, covariate[[r]])), filename=file.cov, debug = debug)
} else {
file.create(file.cov)
write(t(cbind(indN, covariate[[r]])), ncolumns=2, file=file.cov, append=FALSE)
}
file.cov = gsub(data.dir, "$inladatadir", file.cov, fixed=TRUE)
if (nrep == 1 && ngroup == 1) {
n = inla.ifelse(is.null(gp$random.spec[[r]]$n), length(location[[r]][!is.na(location[[r]])]),
gp$random.spec[[r]]$n)
} else {
if (is.null(n))
stop("n is NULL!!!!")
}
if (is.null(gp$random.spec[[r]]$n))
gp$random.spec[[r]]$n = n
if (debug) {
print(paste("n", n))
print(paste("nrep", nrep))
}
n.div.by = inla.model.properties(gp$random.spec[[r]]$model, "latent")$n.div.by
if (!is.null(n.div.by)) {
if (!inla.divisible(n, by=n.div.by))
stop(paste("Model [", gp$random.spec[[r]]$model,"] require `n'", n, "divisible by", n.div.by))
}
if (nrep < 1 || nrep != round(nrep))
stop(paste("\nArgument NREP is void:", nrep))
if (ngroup < 1 || ngroup != round(ngroup))
stop(paste("\nArgument NGROUP is void:", ngroup))
## for the CRW2/BYM (or agumented) models, we have to
## implement the constr=TRUE using the argument
## EXTRACONSTR
if (inla.model.properties(gp$random.spec[[r]]$model, "latent")$augmented) {
fac = inla.model.properties(gp$random.spec[[r]]$model, "latent")$aug.factor
con = inla.model.properties(gp$random.spec[[r]]$model, "latent")$aug.constr
if (fac > 1) {
if ((max(con) > fac || min(con) < 1) || is.null(con))
stop(paste("INTERNAL ERROR: aug.constr = ", con))
## this case is a very special case
if (gp$random.spec[[r]]$constr) {
if (is.null(gp$random.spec[[r]]$extraconstr)) {
A = matrix(0, 1, fac*n)
for(con.elm in con)
A[1, (con.elm-1)*n + 1:n] = 1
e = 0
} else {
nrow = dim(gp$random.spec[[r]]$extraconstr$A)[1]
ncol = dim(gp$random.spec[[r]]$extraconstr$A)[2]
if (ncol != fac*n)
stop(paste("Wrong dimension for the extraconstraint: ncol", ncol, "n", n))
A = matrix(0, nrow+1, ncol)
e = c(gp$random.spec[[r]]$extraconstr$e, 0)
A[1:nrow, 1:ncol] = gp$random.spec[[r]]$extraconstr$A
for(con.elm in con)
A[nrow+1, (con.elm-1)*n + 1:n] = 1
}
gp$random.spec[[r]]$extraconstr = list(A=A, e=e)
gp$random.spec[[r]]$constr = FALSE
}
} else {
stopifnot(fac == 1)
## this is the case fac = 1. this case is a
## very special case, for iid2d, iid3d, etc
n.small = n %/% max(con)
if (gp$random.spec[[r]]$constr) {
if (is.null(gp$random.spec[[r]]$extraconstr)) {
A = matrix(0, length(con), n)
k = 1
for(con.elm in con) {
A[k, (con.elm-1)*n.small + 1:n.small] = 1
k = k + 1
}
e = rep(0, length(con))
} else {
nrow = dim(gp$random.spec[[r]]$extraconstr$A)[1]
ncol = dim(gp$random.spec[[r]]$extraconstr$A)[2]
if (ncol != n)
stop(paste("Wrong dimension for the extraconstraint: ncol", ncol, "n", n))
A = matrix(0, nrow+length(con), ncol)
e = c(gp$random.spec[[r]]$extraconstr$e, rep(0, length(con)))
A[1:nrow, 1:ncol] = gp$random.spec[[r]]$extraconstr$A
k = 1
for(con.elm in con) {
A[nrow+k, (con.elm-1)*n.small + 1:n.small] = 1
k = k + 1
}
}
gp$random.spec[[r]]$extraconstr = list(A=A, e=e)
gp$random.spec[[r]]$constr = FALSE
}
}
}
##print(gp$random.spec[[r]]$extraconstr$A)
##print(gp$random.spec[[r]]$extraconstr$e)
##and in case a file for the extraconstraint
if (!is.null(gp$random.spec[[r]]$extraconstr)) {
A=gp$random.spec[[r]]$extraconstr$A
e=gp$random.spec[[r]]$extraconstr$e
if (ncol(A) != inla.model.properties(gp$random.spec[[r]]$model, "latent")$aug.factor*n)
stop(paste("\n\tncol in matrix A(extraconstraint) does not correspont to the length of f:",
ncol(A),
inla.model.properties(gp$random.spec[[r]]$model, "latent")$aug.factor*n))
file.extraconstr=inla.tempfile(tmpdir=data.dir)
if (inla.getOption("internal.binary.mode")) {
inla.write.fmesher.file(as.matrix(c(as.vector(t(A)), e), ncol=1), filename=file.extraconstr, debug=debug)
} else {
file.create(file.extraconstr)
write(c(as.vector(t(A)), e), ncolumns=1, file=file.extraconstr, append=FALSE)
}
file.extraconstr = gsub(data.dir, "$inladatadir", file.extraconstr, fixed=TRUE)
} else {
file.extraconstr = NULL
}
##....also if necessary a file for the weights (not to be confused with argument 'weights' in the inla() call...)
if (!is.null(gp$random.spec[[r]]$weights)) {
## $weights is the name
www = wf[, gp$random.spec[[r]]$weights ]
www[is.na(www)] = 0
##create a file for the weights
file.weights=inla.tempfile(tmpdir=data.dir)
if (inla.getOption("internal.binary.mode")) {
inla.write.fmesher.file(as.matrix(cbind(indN, www)), filename=file.weights, debug = debug)
} else {
file.create(file.weights)
write(t(cbind(indN, www)), ncolumns=2, file=file.weights, append=FALSE)
}
file.weights = gsub(data.dir, "$inladatadir", file.weights, fixed=TRUE)
n.weights = n.weights+1
}
##create a FFIELD section
all.hyper$random[[r]] = list(label = inla.namefix(gp$random.spec[[r]]$term),
hyper = gp$random.spec[[r]]$hyper)
inla.ffield.section(file=file.ini, file.loc=file.loc, file.cov=file.cov,
file.id.names = file.id.names,
file.extraconstr=file.extraconstr,
file.weights=file.weights, n=n, nrep = nrep, ngroup = ngroup,
random.spec=gp$random.spec[[r]],
results.dir=paste("random.effect", inla.num(count.random), sep=""),
only.hyperparam= only.hyperparam,
data.dir=data.dir)
} else if (inla.one.of(gp$random.spec[[r]]$model, "linear")) {
##....while here we have to add a LINEAR section
count.linear = count.linear+1
xx=rf[, r +1]
xx[is.na(xx)] = 0
file.linear = inla.tempfile(tmpdir=data.dir)
if (inla.getOption("internal.binary.mode")) {
inla.write.fmesher.file(as.matrix(cbind(indN, xx)), filename=file.linear, debug=debug)
} else {
file.create(file.linear)
write(t(cbind(indN, xx)), ncolumns=2, file=file.linear, append=FALSE)
}
file.linear = gsub(data.dir, "$inladatadir", file.linear, fixed=TRUE)
cont = list(cdf=gp$random.spec[[r]]$cdf,
quantiles=gp$random.spec[[r]]$quantiles,
prec=gp$random.spec[[r]]$prec.linear,
mean=gp$random.spec[[r]]$mean.linear,
compute=gp$random.spec[[r]]$compute)
if (is.null(all.hyper$linear)) {
lin.count = 1L
} else {
lin.count = length(all.hyper$linear) + 1L
}
all.hyper$linear[[lin.count]] = inla.linear.section(
file=file.ini, file.fixed=file.linear, label=gp$random.spec[[r]]$term,
results.dir=paste("fixed.effect", inla.num(gp$n.fix+count.linear), sep=""),
control.fixed = cont, only.hyperparam=only.hyperparam)
} else {
stop("This should not happen.")
}
}
}
if (n.weights != gp$n.weights)
stop("\n\tSomething strange with weights in the covariate...")
## the inla section
inla.inla.section(file=file.ini, inla.spec=cont.inla)
## create mode section
cont.mode = inla.set.control.mode.default()
cont.mode[names(control.mode)] = control.mode
inla.mode.section(file=file.ini, cont.mode, data.dir)
## create expert section
cont.expert = inla.set.control.expert.default()
cont.expert[names(control.expert)] = control.expert
inla.expert.section(file=file.ini, cont.expert, data.dir = data.dir)
## create lincomb section
cont.lincomb = inla.set.control.lincomb.default()
cont.lincomb[names(control.lincomb)] = control.lincomb
inla.lincomb.section(file=file.ini, data.dir=data.dir, contr=cont.lincomb, lincomb=lincomb)
## create update section
cont.update = inla.set.control.update.default()
cont.update[names(control.update)] = control.update
inla.update.section(file=file.ini, data.dir=data.dir, contr=cont.update)
## now, do the job
if (debug) {
cat("...done\n")
cat("Run inla...")
}
## inla.arg override all default arguments including `-b' !!!
if (is.null(inla.arg)) {
arg.arg = ""
arg.nt = inla.ifelse(is.numeric(num.threads), paste(" -t ", num.threads, " ", sep=""), "")
## due to the weird behaviour, we will do the verbose-mode differently now
if (inla.os("linux") || inla.os("mac")) {
arg.v = inla.ifelse(verbose, "-v", "-v")
} else {
arg.v = inla.ifelse(verbose, "-v", "-v")
}
arg.s = inla.ifelse(silent, "-s", "")
arg.b = "-b"
} else {
arg.arg = inla.arg
arg.nt = ""
arg.v = ""
arg.s = ""
arg.b = ""
}
## collect all. we might add '-p' later if inla.call="submit"
all.args = paste(arg.arg, arg.b, arg.s, arg.v, arg.nt, sep=" ")
## define some environment variables for remote computing
inla.eval(paste("Sys.setenv(", "\"INLA_PATH\"", "=\"", system.file("bin", package="INLA"), "\"", ")", sep=""))
inla.eval(paste("Sys.setenv(", "\"INLA_OS\"", "=\"", inla.os.type() , "\"", ")", sep=""))
inla.eval(paste("Sys.setenv(", "\"INLA_HGVERSION\"", "=\"", inla.version("hgid") , "\"", ")", sep=""))
if (debug) {
inla.eval(paste("Sys.setenv(", "\"INLA_DEBUG=\"", "=\"", 1, "\"", ")", sep=""))
}
if (remote || submit) {
if (submit) {
all.args = paste(all.args, "-p") ## need this option
inla.eval(paste("Sys.setenv(", "\"INLA_SUBMIT_ID\"", "=\"", submit.id, "\"", ")", sep=""))
}
if (inla.os("windows")) {
inla.eval(paste("Sys.setenv(", "\"INLA_SSH_AUTH_SOCK\"", "=\"", inla.getOption("ssh.auth.sock"), "\"", ")", sep=""))
inla.eval(paste("Sys.setenv(", "\"INLA_CYGWIN_HOME\"", "=\"", inla.getOption("cygwin.home"), "\"", ")", sep=""))
inla.eval(paste("Sys.setenv(", "\"INLA_HOME\"", "=\"",
inla.cygwin.map.filename(gsub("\\\\", "/", inla.get.HOME())), "\"", ")", sep=""))
} else {
inla.eval(paste("Sys.setenv(", "\"INLA_HOME\"", "=\"", inla.get.HOME(), "\"", ")", sep=""))
## if SSH_AUTH_SOCK is not set, then we can pass it to the remote computing script
if (Sys.getenv("SSH_AUTH_SOCK") == "") {
inla.eval(paste("Sys.setenv(", "\"INLA_SSH_AUTH_SOCK\"", "=\"", inla.getOption("ssh.auth.sock"), "\"", ")", sep=""))
}
}
}
my.time.used[2] = Sys.time()
## ...meaning that if inla.call = "" then just build the files (optionally...)
if (nchar(inla.call) > 0) {
if (inla.os("linux") || inla.os("mac")) {
if (nrgeneric > 0L) {
if (!inla.require("parallel")) {
stop("Library 'parallel' is required to use the 'rgeneric'-model.")
}
if (inla.os("mac")) {
## cannot run in verbose mode
all.args = gsub("-v", "", all.args)
tmp.0 = mcparallel(system(paste(shQuote(inla.call), all.args, shQuote(file.ini))))
} else {
if (verbose) {
tmp.0 = mcparallel(system(paste(shQuote(inla.call), all.args, shQuote(file.ini))))
} else {
tmp.0 = mcparallel(system(paste(shQuote(inla.call), all.args, shQuote(file.ini), " > ", file.log,
inla.ifelse(silent == 2L, " 2>/dev/null", ""))))
}
}
for (i in 1L:nrgeneric) {
inla.eval(paste("tmp.", i, " = mcparallel(inla.rgeneric.loop(rgeneric[[", i, "]], debug=debug))", sep=""))
}
inla.eval(paste("tmp = mccollect(list(tmp.0,", paste("tmp.", 1L:nrgeneric, collapse=",", sep=""), "))"))
echoc = tmp[[1L]]
} else {
if (verbose) {
echoc = system(paste(shQuote(inla.call), all.args, shQuote(file.ini)))
} else {
echoc = system(paste(shQuote(inla.call), all.args, shQuote(file.ini), " > ", file.log,
inla.ifelse(silent == 2L, " 2>/dev/null", "")))
}
}
} else if (inla.os("windows")) {
if (!remote && !submit) {
if (verbose) {
echoc = try(system2(inla.call, args=paste(all.args, shQuote(file.ini)), stdout="", stderr="", wait=TRUE))
} else {
bat.file = paste(tempfile(), ".BAT", sep="")
cat("@echo off\n", file=bat.file, append=FALSE)
cat(paste(shQuote(inla.call), all.args, "-v", shQuote(file.ini), ">", shQuote(file.log),
inla.ifelse(silent == 2L, "2>NUL", "")), file=bat.file, append=TRUE)
## this one fails on windows in run from within emacs
##echoc = try(shell(paste("@", shQuote(bat.file), sep=""), wait=TRUE), silent=FALSE)
## try this one which is reported to work
echoc = try(system2(bat.file, wait=TRUE), silent=FALSE)
unlink(bat.file)
}
if (echoc != 0L) {
if (!verbose && (silent != 2L)) {
inla.inlaprogram.has.crashed()
}
}
} else {
## remote || submit
echoc = try(inla.cygwin.run.command(
paste(inla.cygwin.map.filename(inla.call),
all.args,
inla.cygwin.map.filename(file.ini)),
file.log = inla.ifelse(verbose, NULL, inla.cygwin.map.filename(file.log))), silent=TRUE)
## echoc = 0L
}
} else {
stop("\n\tNot supported architecture.")
}
if (debug) {
cat("..done\n")
}
my.time.used[3] = Sys.time()
if (echoc == 0L) {
if (!submit) {
ret = try(inla.collect.results(results.dir, control.results=cont.results, debug=debug,
only.hyperparam=only.hyperparam, file.log = file.log), silent=FALSE)
if (!is.list(ret)) {
ret = list()
}
} else {
ret = list()
}
my.time.used[4] = Sys.time()
cpu.used = c(
"Pre-processing" = diff(my.time.used)[1],
"Running inla" = diff(my.time.used)[2],
"Post-processing" = diff(my.time.used)[3],
"Total" = my.time.used[4] - my.time.used[1])
ret$cpu.used = cpu.used
## store all arguments; replacing 'control.xxx' with 'cont.xxx'
the.args = list()
for (nm in names(formals(inla))) {
nnm = nm
nnm = gsub("^control\\.", "cont.", nnm) ## these are the processed ones
nnm = gsub("^data$", "data.orig", nnm)
nnm = gsub("^formula$", "formula.orig", nnm)
nnm = gsub("^cont(rol)?\\.family$", "control.family.orig", nnm)
inla.eval(paste("the.args$", nm, " = ", nnm, sep=""))
}
## remove the .Evironment attribute, as it will fail if
## its rerun if .Environment is not there.
attr(the.args$formula, ".Environment") = NULL
## further fix for $control.family until the c(param = numeric(0)) issue is solved.
if (n.family > 1L) {
## we need to fix the case where there this option is
## not set. otherwise, we will get list(), instead of
## list(list(), list()), say, for n.family=2
if (is.list(the.args$control.family) && length(the.args$control.family) == 0L) {
the.args$control.family = lapply(1:n.family, function(x) list())
}
}
## OLD CODE: if (n.family == 1) the.args$control.family = the.args$control.family[[1L]]
ret$all.hyper = all.hyper
ret$.args = the.args
ret$call = call
ret$model.matrix = gp$model.matrix
class(ret) = "inla"
} else {
## do this instead
if (silent != 2L) {
inla.inlaprogram.has.crashed()
} else {
## with a crash, try to collect the logfile only
ret = try(inla.collect.logfile(file.log, debug), silent = TRUE)
if (inherits(ret, "try-error")) {
ret = NULL
} else {
class(ret) = "inla"
}
}
}
if (debug && !keep) {
cat("clean up\n")
}
if (!keep && !submit) {
try(unlink(inla.dir, recursive=TRUE), silent = TRUE)
}
} else {
ret = NULL
}
##
if (submit) {
ret$misc$inla.dir = inla.dir
ret.sub = list(ret = ret, id = submit.id)
} else {
return (ret)
}
}
`inla.fix.data` = function(data, n, revert = FALSE)
{
## extract all entries in 'data' with length='n'. if 'revert', do the oposite
if (is.data.frame(data)) {
if (dim(data)[1L] == n) {
return (inla.ifelse(revert, data.frame(), data))
} else {
return (inla.ifelse(!revert, data.frame(), data))
}
}
if (is.list(data) && length(data) > 0L) {
idx = which(sapply(
data,
function(a, n) {
if (inla.is.matrix(a) && (length(dim(a)) > 1L) && (dim(a)[1L] == n)) {
return (TRUE)
} else if (length(a) != n || inla.is.matrix(a)) {
return (FALSE)
} else if (length(a) == n) {
return (TRUE)
} else {
stop("This should not happen.")
}
},
n = n))
if (revert) {
idx = (1:length(data))[-idx]
}
if (length(idx) > 0L) {
return (data[idx])
} else {
return (inla.ifelse(revert || is.list(data), list(), data.frame()))
}
} else {
return (data)
}
stop("Should not happen.")
}
`inla.expand.factors` = function(data, exclude.names = c())
{
## replace factors in 'data' with their expanded version we get
## from model.matrix without any intercept.
for(k in seq_along(data)) {
if (is.factor(data[[k]])) {
if (!(names(data)[k] %in% exclude.names)) {
formula = as.formula(paste("~ -1 + ", names(data)[k]))
tmp = model.matrix(formula, model.frame(formula, data, na.action = na.pass))
colnames(tmp) = levels(data[[k]])
data[[k]] = tmp
}
}
}
return (data)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.