Description Usage Arguments Value Examples
Create a scatterplot for each row of a normalized gene expression matrix where x and y axis are from a data dimensionality reduction tool. The cells are colored by the module probability(s).
1 2 3 | plotDimReduceModule(dim1, dim2, counts, celda.mod, modules = NULL,
rescale = TRUE, size = 1, xlab = "Dimension_1", ylab = "Dimension_2",
color_low = "grey", color_mid = NULL, color_high = "blue")
|
dim1 |
Numeric vector. First dimension from data dimensionality reduction output. |
dim2 |
Numeric vector. Second dimension from data dimensionality reduction output. |
counts |
Integer matrix. Rows represent features and columns represent cells. This matrix should be the same as the one used to generate 'celda.mod'. |
celda.mod |
Celda object of class "celda_G" or "celda_CG". |
modules |
Character vector. Module(s) from celda model to be plotted. |
rescale |
Logical. Whether rows of the matrix should be rescaled to [0,1]. Default TRUE. |
size |
Numeric. Sets size of point on plot. Default 1. |
xlab |
Character vector. Label for the x-axis. Default "Dimension_1". |
ylab |
Character vector. Label for the y-axis. Default "Dimension_2". |
color_low |
Character. A color available from ‘colors()'. The color will be used to signify the lowest values on the scale. Default ’grey'. |
color_mid |
Character. A color available from 'colors()'. The color will be used to signify the midpoint on the scale. |
color_high |
Character. A color available from ‘colors()'. The color will be used to signify the highest values on the scale. Default ’blue'. |
The plot as a ggplot object
1 2 3 4 5 | celda.tsne <- celdaTsne(counts = celda.CG.sim$counts,
celda.mod = celda.CG.mod)
plotDimReduceModule(dim1 = celda.tsne[,1], dim2 = celda.tsne[,2],
counts = celda.CG.sim$counts, celda.mod = celda.CG.mod,
modules = c("L1","L2"))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.