start <- as.POSIXlt(Sys.time())
cbcb <- sm(library(cbcbSEQ))
context("320de_limma_batch.R: Does hpgltools work with limma?")
load("pasilla_df.rda")
pasilla <- new.env()
load("pasilla.rda", envir = pasilla)
pasilla_expt <- pasilla[["expt"]]
## Testing that hpgltools gets a similar result to cbcbSEQ using limma.
## Until preprocessCore gets fixed, disable this.
cbcb_counts <- cbcbSEQ::filterCounts(counts)
cbcb_qcounts <- cbcbSEQ::qNorm(cbcb_counts)
cbcb_cpm <- cbcbSEQ::log2CPM(cbcb_qcounts)
cbcb_qcpmcounts <- as.matrix(cbcb_cpm[["y"]])
cbcb_svd <- cbcbSEQ::makeSVD(cbcb_qcpmcounts)
cbcb_res <- cbcbSEQ::pcRes(cbcb_svd[["v"]], cbcb_svd[["d"]],
design[["condition"]], design[["libType"]])
cbcb_libsize <- cbcb_cpm[["lib.size"]]
cbcb_combat <- cbcbSEQ::combatMod(cbcb_cpm[["y"]], batch = design[["libType"]],
mod = design[["condition"]], noScale = TRUE)
cbcb_v <- cbcbSEQ::voomMod(cbcb_qcpmcounts,
model.matrix(~ design[["condition"]] + design[["libType"]]),
lib.size = cbcb_libsize)
## It looks to me like the voomMod function is missing a is.na() check and so
## the lowess() function is failing.
hpgl_v <- hpgl_voom(cbcb_qcpmcounts,
model = model.matrix(~ design[["condition"]] + design[["libType"]]),
libsize = cbcb_libsize, logged = TRUE, converted = TRUE)
## Taking the first column of the E slot in in v
cbcb_fit <- lmFit(cbcb_v)
cbcb_eb <- eBayes(cbcb_fit)
table_order <- sort(rownames(cbcb_eb))
cbcb_table <- topTable(cbcb_eb, coef = 2, n = nrow(cbcb_v[["E"]]))
cbcb_data <- as.matrix(counts)
cbcb_data <- cbcb_data[table_order, ]
hpgl_data <- exprs(pasilla_expt)
hpgl_data <- hpgl_data[table_order, ]
test_that("Does data from an expt equal a raw dataframe?", {
expect_equal(cbcb_data, hpgl_data)
})
## Perform log2/cpm/quantile/combatMod normalization
hpgl_norm <- sm(normalize_expt(pasilla_expt, transform = "log2", norm = "quant",
convert = "cbcbcpm", filter = "cbcb", thresh = 1))
## Ensure that we have the same count tables for limma_pairwise
## and the invocations of voom->topTable() by cbcbSEQ.
##expected <- nrow(cbcb_counts)
##actual <- nrow(exprs(hpgl_norm))
##test_that("Do we get the same number of genes using cbcb's filter as normalize_expt?", {
## expect_equal(expected, actual)
##})
## If we made it this far, then the inputs to limma should agree.
## Use this section to ensure that our invocation of limma without an intercept
## matches that from cbcbSEQ.
int_limma <- limma_pairwise(hpgl_norm, model_batch = TRUE, limma_method = "ls",
model_intercept = TRUE, which_voom = "hpgl")
int_voom <- int_limma[["voom_result"]]
int_fit <- int_limma[["fit"]]
int_eb <- int_limma[["pairwise_comparisons"]]
int_table <- int_limma[["all_tables"]][["untreated"]]
## Now see that the voom outputs are the same
expected <- cbcb_v[["E"]]
expected <- expected[table_order, ]
actual <- int_voom[["E"]]
actual <- actual[table_order, ]
test_that("Do cbcbSEQ and hpgltools agree on the voom output?", {
expect_equal(expected, actual)
})
## Note: 202204, I started more aggressively sanitizing the condition names,
## so remove the '_' from 'single_end'
## Fix the column names for the following tables to simplify things.
## int_names <- c("(Intercept)", "untreated", "single_end")
int_names <- c("(Intercept)", "untreated", "singleend")
expected <- cbcb_fit[["coefficients"]]
colnames(expected) <- int_names
expected <- expected[table_order, ]
actual <- int_fit[["coefficients"]]
actual <- actual[table_order, ]
test_that("Do cbcbSEQ and hpgltools agree on the lmFit result: coefficients?", {
expect_equal(expected, actual, tolerance = 0.001)
})
expected <- cbcb_fit[["stdev.unscaled"]]
colnames(expected) <- int_names
expected <- expected[table_order, ]
actual <- int_fit[["stdev.unscaled"]]
actual <- actual[table_order, ]
test_that("Do cbcbSEQ and hpgltools agree on the lmFit result: stdev_unscaled?", {
expect_equal(expected, actual, tolerance = 0.001)
})
expected <- cbcb_fit[["cov.coefficients"]]
colnames(expected) <- int_names
rownames(expected) <- int_names
actual <- int_fit[["cov.coefficients"]]
test_that("Do cbcbSEQ and hpgltools agree on the lmFit result: cov.coefficients?", {
expect_equal(expected, actual)
})
expected <- cbcb_eb[["t"]]
colnames(expected) <- int_names
expected <- expected[table_order, ]
actual <- int_eb[["t"]]
actual <- actual[table_order, ]
test_that("Do cbcbSEQ and hpgltools agree on the eBayes result: eb[1]?", {
expect_equal(expected, actual, tolerance = 0.1) ## The intercept
})
expected <- cbcb_eb[["p.value"]]
colnames(expected) <- int_names
expected <- expected[table_order, ]
actual <- int_eb[["p.value"]]
actual <- actual[table_order, ]
test_that("Do the p-value tables stay the same pval[1]?", {
expect_equal(expected[[1]], actual[[1]])
})
expected <- cbcb_table[table_order, "logFC"]
actual <- int_table[table_order, "logFC"]
test_that("Do cbcbSEQ and hpgltools agree on the logFCs?", {
expect_equal(expected, actual, tolerance = 0.01)
})
expected <- cbcb_table[table_order, "AveExpr"]
actual <- int_table[table_order, "AveExpr"]
test_that("Do cbcbSEQ and hpgltools agree on the AveExprs?", {
expect_equal(expected, actual, tolerance = 0.01)
})
expected <- cbcb_table[table_order, "P.Value"]
actual <- int_table[table_order, "P.Value"]
test_that("Do cbcbSEQ and hpgltools agree on the p-values?", {
expect_equal(expected, actual, tolerance = 0.01)
})
expected <- cbcb_table[table_order, "adj.P.Value"]
actual <- int_table[table_order, "adj.P.Value"]
test_that("Do cbcbSEQ and hpgltools agree on the p-values?", {
expect_equal(expected, actual, tolerance = 0.01)
})
## Finished checking the no-intercept invocations, now compare intercept to no-intercept limma.
#noint_limma <- limma_pairwise(hpgl_norm, which_voom = "hpgl", limma_method = "ls")
noint_limma <- limma_pairwise(hpgl_norm, which_voom = "hpgl", limma_method = "ls")
expected <- noint_limma[["voom_result"]][["E"]]
table_order <- rownames(expected)
actual <- int_limma[["voom_result"]][["E"]]
expected <- expected[table_order, ]
actual <- actual[table_order, ]
test_that("Are the intercept and non-intercept voom results equivalent?", {
expect_equal(expected, actual)
})
noint_coefficients <- noint_limma[["fit"]][["coefficients"]]
int_coefficients <- int_limma[["fit"]][["coefficients"]]
expected <- int_fit[["coefficients"]][, 1] ## The '(Intercept)' column
actual <- noint_limma[["fit"]][["coefficients"]][, "treated"]
test_that("Do the intercept model results equal those from cell means for the intercept?", {
expect_equal(expected, actual)
})
## Now check the noint_table vs. the int_table results.
noint_table <- noint_limma[["all_tables"]][[1]]
noint_table <- noint_table[table_order, ]
int_table <- int_limma[["all_tables"]][[1]]
int_table <- int_table[table_order, ]
expected <- noint_table[, "logFC"]
actual <- int_table[, "logFC"]
test_that("Do the intercept model results equal those from no-intercept (logFC)?", {
expect_equal(expected, actual)
})
expected <- noint_table[["AveExpr"]]
actual <- int_table[["AveExpr"]]
test_that("Do the intercept and no-intercept fits give equal AveExpr values?", {
expect_equal(expected, actual)
})
expected <- noint_table[["t"]]
actual <- int_table[["t"]]
test_that("Do the intercept and no-intercept fits give equal t-statistics?", {
expect_equal(expected, actual, tolerance = 0.02)
})
expected <- noint_table[["P.Value"]]
actual <- int_table[["P.Value"]]
test_that("Do the intercept and no-intercept fits give equal P-Values?", {
expect_equal(expected, actual, tolerance = 0.01)
})
limma_written <- sm(write_limma(noint_limma, excel = "limma_test.xlsx"))
hpgl_limma <- sm(limma_pairwise(pasilla_expt))
## For the following tests
limma_file <- "320_de_limma.rda"
saved <- save(list = ls(), file = limma_file)
test_that("Did we save the limma results?", {
expect_true(file.exists(limma_file))
})
end <- as.POSIXlt(Sys.time())
elapsed <- round(x = as.numeric(end - start))
message("\nFinished 320de_limma_batch.R in ", elapsed, " seconds.")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.