# partitionReads -----------------------------------------------------------
#' Cluster a SNP matrix into haplotype groups
#'
#' @param x A \code{[read x position]} SNP matrix.
#' @param distAlleles Number of distinct alleles in the sample.
#' @param sortBy sort by "distance" or "count". See
#' \code{\link{partitionLongreads}} for details
#' @param threshold Only gaps above threshold will be treated as gaps.
#' Removes noisy positions in longreads.
#' @param clMethod clustering method passed to \code{\link[stats]{hclust}}.
#' @param minLen Minimal fraction of SNPs that need to be covered by a read
#' to be used
#' @param skipGapFreq Skip a badly behaved polymorphic position if the
#' frequency of gaps within a haplotype group exceeds \code{skipGapFreq}.
#' @param deepSplit sensitivity parameter passed to
#' \code{\link[dynamicTreeCut]{cutreeHybrid}}.
#' @param ... Additional parameters.
#'
#' @return A \code{HapPart} object.
#' @export
#' @examples
#' ###
partitionReads <- function(x, distAlleles = 2, selectAllelesBy = "count", threshold = 0.2,
clMethod = "ward.D", minLen = 0.5, skipGapFreq = 2/3,
deepSplit = 1, minClusterSize = 15, ...) {
indent <- list(...)$indent %||% indentation()
selectAllelesBy <- match.arg(selectAllelesBy, c("count", "distance"))
# get SNPs
ppos <- colnames(x)
badPpos <- c()
xm <- x[order(rownames(x)), , drop = FALSE]
## if there is only one SNP for clustering, use it! If it does not match both
## sequencing types it will be reported
if (length(ppos) > 1) {
badPpos <- apply(xm, 2, function(col) {
sum(col == "+" | col == "-")/NROW(col) > skipGapFreq
})
xm <- xm[, !badPpos, drop = FALSE]
badPpos <- ppos[badPpos]
flog.info("%s%s polymorphisms occupy less than %0.3g%% of the reads and are discarded",
indent(), length(badPpos), 100*(1 - skipGapFreq), name = "info")
flog.info("%sUsing the remaining %s polymorphisms for clustering",
indent(), NCOL(xm), name = "info")
if (NCOL(xm) == 0) {
flog.error("%s No polymorphisms remain. Aborting clustering." %<<%
" Check reads and reference and inspect the mapInit plot",
indent(), name = "info")
stop("No polymorphisms remain for clustering. Check mapInit plot.")
}
}
## Get the SNP matrix as sequences
xseqs <- .getSeqsFromMat(xm)
## if only one SNP, remove every read without it
if (NCOL(xm) == 1)
xseqs <- xseqs[!xseqs == "+"]
## Get only the fraction of reads that contain at least minLen of total SNPs
clusters <- .getClusts(xseqs, clMethod = clMethod, minLen = minLen,
deepSplit = deepSplit, threshold = threshold,
minClusterSize = minClusterSize, suppressGaps = FALSE,
indent = indent)
subclades <- factor(clusters$clades[!clusters$clades == "@"])
tree <- clusters$tree
hptypes <- levels(subclades)
if (length(subclades) == 0) {
flog.error("%sTwo few longreads for clustering", indent(), name = "info")
stop("To few longreads for clustering")
}
flog.info("%sInitial clustering results in %s haplotypes <%s>",
indent(), length(hptypes), comma(hptypes), name = "info")
## Get scores and assign clades by freq mat
## Position Weight Matrix: Use frequency plus pseudocount/ basefrequency
## (here 0.25 for each).
msa <- stats::setNames(lapply(levels(subclades), function(x) {
xseqs[names(subclades[subclades == x])]
}), hptypes)
mats <- lapply(msa, function(x) createPWM(x))
hpseqs <- Biostrings::DNAStringSet(vapply(msa, function(x) {
conseq(t(Biostrings::consensusMatrix(x)[c(VALID_DNA(), "+"), ]), type = "simple")
}, FUN.VALUE = character(1)))
names(hpseqs) <- vapply(hptypes, function(hptype) {
colon(c(hptype, sum(subclades == hptype)))
}, FUN.VALUE = character(1))
if (length(hptypes) > distAlleles) {
flog.info("%sIdentify chimeric reads/haplotypes", indent(), name = "info")
if (selectAllelesBy == "count") {
rC <- names(sort(table(subclades), decreasing = TRUE)[seq_len(distAlleles)])
}
else if (selectAllelesBy == "distance") {
rC <- sort(.findChimeric(seqs = hpseqs, distAlleles = distAlleles))
}
flog.info("%sUse only clusters <%s>", indent(), comma(rC), name = "info")
mats <- mats[rC]
}
hptypes <- names(mats)
scores <- .getScores(xseqs, mats)
clades <- scores %>%
dplyr::group_by(.data$read) %>%
dplyr::slice(which.max(.data$score)) %>%
dplyr::ungroup() %>%
dplyr::mutate(
clustclade = dplyr::if_else(.data$read %in% names(subclades),
as.character(subclades[.data$read]),
NA_character_)) %>%
dplyr::mutate(
correct = dplyr::if_else(.data$clustclade == .data$clade, TRUE, FALSE))
## Correctly classified clades in the initial clustering
falseClassified <- sum(!clades$correct, na.rm = TRUE)/sum(clades$correct, na.rm = TRUE)
flog.info("%sCorrected classification of %.2f%% of reads", indent(), 100*falseClassified, name = "info")
lapply(hptypes, function(hp, clades) {
invisible(flog.info("%s%s reads in haplotype <%s>", indent(), table(clades$clade)[hp], hp, name = "info"))
}, clades = clades)
# Create the partition table
part_ <- HapPart(readNames = clades$read, snpPos = colnames(xm))
PRT(part_) <- clades$clade ## <character>; the haplotype assignment for each read
mcoef(part_) <- clades$score ## <numeric>; the membership coefficient for each read
HTR(part_) <- tree ## <hclust>; hierarchical cluster tree
K(part_) <- length(ppos) - length(badPpos) ## <numeric>; The total number of polymorphic positions used.
OC(part_) <- levels(subclades) ## <character>; The original clusters
SCR(part_) <- scores
SQS(part_) <- hpseqs
PWM(part_) <- mats
##
attr(part_, "snp.corr.mat") <- attr(x, "snp.corr.mat")
attr(part_, "snp.clust") <- attr(x, "snp.clust")
return(part_)
}
# Helpers -----------------------------------------------------------------
.getClusts <- function(xseqs, minLen = 0.80, clMethod = "ward.D",
deepSplit = 1, minReadsFrac = 1/3, threshold = 0.2,
minClusterSize = 15, suppressGaps = TRUE, ...) {
assert_that(
is.double(minLen),
is.double(minReadsFrac),
is.double(threshold)
)
indent <- list(...)$indent %||% indentation()
# heuristic for how many reads should be used
minLen <- .getMinLenClust(minReadsFrac, minLen, xseqs, indent = indent)
flog.info("%sUse only longreads containing at least %s%% of all polymorphisms",
indent(), minLen*100, name = "info")
xSub <- xseqs[Biostrings::width(gsub("\\+", "", xseqs)) > minLen*unique(Biostrings::width(xseqs))]
## Consensus matrix with pseudocount
flog.info("%sConstruct a Position Specific Distance Matrix" %<<%
" from the remaining %s sequences", indent(), length(xSub), name = "info")
consmat <- as.matrix(
Biostrings::consensusMatrix(xSub, as.prob = TRUE, baseOnly = FALSE)[c(VALID_DNA(), "+" ), ] +
1/length(xSub))
if (suppressGaps) {
# Remove gaps below a threshold as they are probably sequencing artifacts
consmat <- apply(consmat, 2, function(a) {
a["-"] <- ifelse(a["-"] < threshold, min(a), a["-"])
a
})
}
## normalise to sum to 1
consmat <- consmat/colSums(consmat)
## Get Position Specific Distance Matrix
dist <- PSDM(x = xSub, consmat = as.matrix(consmat))
dist <- stats::as.dist(dist)
## replace "na" with mean for a being able to cluster
dist[is.na(dist)] <- mean(dist, na.rm = TRUE)
## Perform a hierarchical clustering
hcc <- stats::hclust(dist, method = clMethod)
## do a dynamic cut. Need to be evaluated
clusts <- dynamicTreeCut::cutreeHybrid(hcc,
minClusterSize = minClusterSize,
distM = as.matrix(dist),
deepSplit = deepSplit,
verbose = FALSE)
# extract the clusters for each sequence
clades <- as.factor(vapply(clusts$labels, function(i) {
rawToChar(as.raw(as.integer(i) + 64))
}, FUN.VALUE = character(1), USE.NAMES = FALSE))
names(clades) <- hcc$labels
return(list(clades = clades, tree = hcc))
}
## Get minimal fraction of SNPs needed for a read to be used
.getMinLenClust <- function(minReadsFrac, minLen, xseqs, ...) {
indent <- list(...)$indent %||% indentation()
adjustedMinReadsFrac <- minReadsFrac +
(0.03*Biostrings::width(xseqs[1])/50) * 1500^2/length(xseqs)^2
adjustedMinReadsFrac <- min(0.5, adjustedMinReadsFrac)
flog.info("%sAdjust the minimal fraction of reads used for clustering" %<<%
" from %0.4g%% to %0.4g%%", indent(), minReadsFrac*100,
adjustedMinReadsFrac*100, name = "info")
# get long reads containing sufficient number of SNPs
minLens <- seq(1, 0, -0.01)
lenCounts <- vapply(minLens, function(minl) {
length(xseqs[
Biostrings::width(gsub("\\+", "", xseqs)) >
minl*Biostrings::width(xseqs[1])
])/length(xseqs)
}, FUN.VALUE = numeric(1))
names(lenCounts) <- minLens
minLen <- max(as.numeric(names(
lenCounts[which(lenCounts > adjustedMinReadsFrac)][1])), minLen)
}
.getScores <- function(reads, pwmlist) {
assert_that(
is(reads, "XStringSet"),
is.list(pwmlist),
!is.null(names(pwmlist))
)
rs <- do.call(dplyr::bind_rows, Map(function(pwm, hp) {
b <- vapply(reads, function(read) .read_score(read, pwm), FUN.VALUE = double(1))
tibble::tibble(read = names(b), score = b, clade = hp)
}, pwm = pwmlist, hp = names(pwmlist))) %>%
dplyr::arrange(.data$read, dplyr::desc(.data$score))
rs
}
## Identify chimeric clusters
.findChimeric <- function(seqs, distAlleles, plotSeqs = FALSE) {
# Use only non empty seqs
seqs <- seqs[vapply(seqs, function(x) {
!nchar(stripIndel(x)) == 0
}, FUN.VALUE = logical(1))]
forward <- lapply(seq_len(Biostrings::width(seqs[1])), function(x) {
hammingDist(Biostrings::DNAStringSet(seqs, start = 1, width = x))})
reverse <- lapply(seq_len(Biostrings::width(seqs[1])), function(x) {
hammingDist(Biostrings::DNAStringSet(Biostrings::reverse(seqs),
start = 1, width = x))})
dm <- foreach(h = names(seqs), .combine = 'cbind') %:%
foreach(hp = names(seqs)) %do% {
f <- vapply(forward, function(x) x[h, hp], FUN.VALUE = numeric(1))
r <- vapply(reverse, function(x) x[h, hp], FUN.VALUE = numeric(1))
unname(stats::quantile(f + r)[2])
}
nms <- vapply(strsplit(names(seqs), ":"), function(x) x[1],
FUN.VALUE = character(1))
rownames(dm) <- colnames(dm) <- nms
c("A", (names(sort(unlist(dm[1,]),
decreasing = TRUE)[seq_len(distAlleles - 1)])))
}
# Class: HapPart -----------------------------------------------------------
#' HapPart (Haplotype Partition) stores the haplotype information from
#' longread clustering.
#' @param readNames The names of reads in each cluster.
#' @param snpPos SNP positions used for clustering.
#' @param x A \code{\link{HapPart}} object.
#' @return HapPart object.
#' @slot readNames The names of reads in each cluster.
#' @slot snpPos SNP positions used for clustering.
#' @slot mcoef membership coefficient. Score for each read for belonging
#' to its cluster. Based on the sum of probabilities of a PWM of the haplotype
#' sequences.
#' @slot tree The resulting tree from \code{\link[stats]{hclust}}.
#' @slot scores The same scores as in mcoef, but for all clusters.
#' @slot mats PWM matrices of the haplotype sequences.
#' @slot classification ... TODO
#' @export
HapPart <- function(readNames, snpPos) {
readNames <- as.character(readNames)
snpPos <- as.integer(snpPos)
n <- length(readNames) # number of reads
k <- length(snpPos) # number of polymorphic positions
structure(
readNames,
snpPos = snpPos,
k = 0L, # total number of polymorphic positions
mcoef = rep(0, n),
tree = NULL, # Add tree from hclust
scores = NULL,
mats = NULL,
classification = matrix( # running classification of polymorphic positions
rep("", n * k),
nrow = n,
ncol = k,
dimnames = list(NULL, snpPos)
),
partition = rep("", n), # final partitioning of reads into haplotypes
class = c("HapPart", "character")
)
}
## Methods: HapPart --------------------------------------------------------
#' @export
print.HapPart <- function(x, sortBy = "none", nrows = 8, ...) {
sortBy <- match.arg(sortBy, c("none", "name", "mcoef"))
n <- max(length(x), nrows)
df0 <- data.frame(
read = substr(as.vector(x), 1, 12) %<<% "...",
mcoef = mcoef(x),
partition = PRT(x)
)[seq_len(n), ]
cat("HapPart over", K(x), "polymorphic positions:\n")
switch(
sortBy,
none = print(df0, ...),
name = print(df0[order(df0$read),], ...),
mcoef = print(df0[order(df0$mcoef),], ...)
)
invisible(x)
}
#' @export
`[.HapPart` <- function(x, i, j = NULL, drop = NULL) {
i <- if (is.character(i)) x %in% i else i
rs <- NextMethod()
attr(rs, "snpPos") <- SNP(x)
attr(rs, "k") <- K(x)
# add mcoef attr
attr(rs, "mcoef") <- mcoef(x)[i]
attr(rs, "classification") <- CLS(x)[i, , drop = FALSE]
attr(rs, "partition") <- PRT(x)[i]
attr(rs, "tree") <- HTR(x)
attr(rs, "scores") <- SCR(x)
class(rs) <- c("HapPart", "character")
rs
}
mcoef <- function(x) UseMethod("mcoef")
#' @describeIn HapPart
#' The membership coefficient in the assigned clade.
#' @export
mcoef.HapPart <- function(x) {
attr(x, "mcoef")
}
`mcoef<-` <- function(x, value) UseMethod("mcoef<-")
`mcoef<-.HapPart` <- function(x, value) {
attr(x, "mcoef") <- value
x
}
## The PWM matrix of a cluster
PWM <- function(x) UseMethod("PWM")
#' @describeIn HapPart
#' Get the Position Weight Matrix
#' @export
PWM.HapPart <- function(x) {
attr(x, "PWM")
}
`PWM<-` <- function(x, value) UseMethod("PWM<-")
`PWM<-.HapPart` <- function(x, value) {
attr(x, "PWM") <- value
x
}
## Get the original number of clusters for plotting the tree
OC <- function(x) UseMethod("OC")
#' @describeIn HapPart
#' The original clusters from \code{\link[stats]{hclust}}.
#' @export
OC.HapPart <- function(x) {
attr(x, "oc")
}
`OC<-` <- function(x, value) UseMethod("OC<-")
`OC<-.HapPart` <- function(x, value) {
attr(x, "oc") <- value
x
}
## All vs all cluster distances for each read
SCR <- function(x) UseMethod("SCR")
#' @describeIn HapPart
#' The membership scores for each read in each cluster.
#' @export
SCR.HapPart <- function(x) {
attr(x, "scores")
}
`SCR<-` <- function(x, value) UseMethod("SCR<-")
`SCR<-.HapPart` <- function(x, value) {
attr(x, "scores") <- value
x
}
## The actual partition table
partition <- function(x) UseMethod("partition")
partition.HapPart <- function(x) {
dplyr::arrange(dplyr::data_frame(
read = as.vector(x),
haplotype = as.factor(PRT(x)),
mcoef = mcoef(x)
),
dplyr::desc(mcoef))
}
## Total number of polymorphic positions between haplotypes
K <- function(x) UseMethod("K")
#' @describeIn HapPart
#' The total number of polymorphic positions used.
#' @export
K.HapPart <- function(x) {
attr(x, "k")
}
`K<-` <- function(x, value) UseMethod("K<-")
`K<-.HapPart` <- function(x, value) {
attr(x, "k") <- value
x
}
## The consensus sequence
SQS <- function(x) UseMethod("SQS")
#' @describeIn HapPart
#' Get the consensus sequences of the haplotypes.
#' @export
SQS.HapPart <- function(x) {
attr(x, "seqs")
}
`SQS<-` <- function(x, value) UseMethod("SQS<-")
`SQS<-.HapPart` <- function(x, value) {
attr(x, "seqs") <- value
x
}
## The classification
CLS <- function(x) UseMethod("CLS")
#' @describeIn HapPart
#' Get the classification of the haplotype partitioning.
#' @export
CLS.HapPart <- function(x) {
attr(x, "classification")
}
`CLS<-` <- function(x, value) UseMethod("CLS<-")
`CLS<-.HapPart` <- function(x, value) {
attr(x, "classification")[, K(x)] <- value
x
}
## All SNP positions
SNP <- function(x) UseMethod("SNP")
#' @describeIn HapPart
#' Get the SNP positions.
#' @export
SNP.HapPart <- function(x) {
attr(x, "snpPos")
}
`SNP<-` <- function(x, value) UseMethod("SNP<-")
`SNP<-.HapPart` <- function(x, value) {
attr(x, "snpPos") <- value
x
}
## Get the partition vector
PRT <- function(x) UseMethod("PRT")
#' @describeIn HapPart
#' The haplotype assignment as a character vector <A>, <B>, ... for
#' each read.
#' @export
PRT.HapPart <- function(x) {
attr(x, "partition")
}
`PRT<-` <- function(x, value) UseMethod("PRT<-")
`PRT<-.HapPart` <- function(x, value) {
attr(x, "partition") <- value
x
}
## get tree from hclust
HTR <- function(x) UseMethod("HTR")
#' @describeIn HapPart
#' The cluster tree produced by \code{\link[stats]{hclust}}.
#' @export
HTR.HapPart <- function(x) {
attr(x, "tree")
}
`HTR<-` <- function(x, value) UseMethod("HTR<-")
`HTR<-.HapPart` <- function(x, value) {
attr(x, "tree") <- value
x
}
# Summarise and Plot ------------------------------------------------------
#' Plot distribution of haplotype partitioned reads
#'
#' @param x A \code{HapPart} object.
#' @param label Optional plot label.
#' @param limits Manually provided limits for plotting. Defaults to read limits
#' from the \code{HapPart} object.
#'
#' @return A \code{ggplot} object.
#' @export
#' @examples
#' ###
plotPartitionHistogram <- function(x, label = "", limits = NULL) {
stopifnot(is(x, "HapPart"))
if (is.null(limits)) {
limits <- x$getLimits()
}
data <- partition(x) %>%
dplyr::mutate(mcoef = ifelse(.data$haplotype == "A", mcoef, -1*mcoef))
ggplot(data) +
geom_histogram(aes_string(x = 'mcoef', fill = 'haplotype'), bins = 100) +
scale_fill_manual(values = PARTCOL()) +
geom_vline(xintercept = c(limits[1], -limits[2]), linetype = "dashed",
colour = "grey80") +
xlab("Haplotype membership coefficient") +
ylab("Number of reads") +
theme_bw()
}
#' Plot distribution of haplotype partitioned reads for more than two
#' haplotypes
#'
#' @param x A \code{HapPart} object.
#' @param label Optional plot label.
#' @param limits provided limits for each haplotype as a named list.
#'
#' @return A \code{ggplot} object.
#' @export
#' @examples
#' ###
#'
plotPartitionHistogramMulti <- function(x, limits, label = "") {
stopifnot(is(x, "HapPart"))
data <- partition(x) %>%
dplyr::mutate(limit = unlist(limits)[.data$haplotype])
ggplot(data) +
geom_histogram(aes(x = mcoef, fill = haplotype), bins = 100) +
facet_grid(~ haplotype) +
geom_vline(aes(xintercept = limit), colour = "grey40",
linetype = "dashed", size = 1) +
scale_fill_manual(values = PARTCOL()) +
xlab("Haplotype membership coefficient") +
ylab("Number of reads") +
ggtitle(label = label) +
theme_bw()
}
#' Plot a radar chart for each haplotype. Membership values for each read
#' for each partition are shown as lines.
#'
#' @param x A \code{HapPart} object.
#'
#' @return A \code{ggplot} object.
#' @export
#'
#' @examples
#' ###
plotRadarPartition <- function(x){
stopifnot(is(x, "HapPart"))
df <- dplyr::full_join(SCR(x), partition(x), by = "read")
# use bigger size for 2d radarplot.
size <- ifelse(length(levels(df$haplotype)) == 2, 4, 0.05)
ggplot(df, aes_string(x = 'clade', y = 'score')) +
geom_polygon(aes_string(group = 'read', color = 'haplotype'), fill = NA,
size = size, show.legend = FALSE, alpha = 1) +
facet_grid( ~ haplotype) +
ggtitle("Similarity to clusters") +
scale_color_manual(values = PARTCOL()) +
theme_bw() +
theme(
axis.title = element_blank(),
axis.text.y = element_blank(),
axis.ticks = element_blank()
) +
.coordRadar()
}
#' Plot tree of initial clustering
#'
#' @param x A \code{HapPart} object.
#'
#' @return A \code{ggplot} object.
#' @export
#' @examples
#' ###
plotPartitionTree <- function(x){
assert_that(
is(x, "HapPart"),
requireNamespace("ggdendro", quietly = TRUE)
)
tree <- HTR(x)
k <- length(OC(x))
tryCatch({
dendr <- ggdendro::dendro_data(tree, type = "rectangle")
dendr$labels <- dendr$labels %>%
dplyr::mutate(label = as.character(.data$label))
clust <- stats::cutree(tree, k)
clust <- tibble::tibble(label = names(clust), haplotype = clust)
dendr$labels <- dplyr::left_join(dendr$labels, clust, by = "label")
height <- unique(dendr$segments$y)[order(unique(dendr$segments$y),
decreasing = TRUE)]
cut.height <- mean(c(height[k], height[k - 1]))
dendr$segments <- dendr$segments %>%
dplyr::mutate(line = dplyr::if_else(
.data$y == .data$yend & .data$y > cut.height, 1, dplyr::if_else(
.data$yend > cut.height,1, 2)))
dendr$segments$cluster <- c(-1, diff(dendr$segments$line))
change <- which(dendr$segments$cluster == 1)
for (i in seq_len(k)) dendr$segments$cluster[change[i]] = i + 1
dendr$segments <- dendr$segments %>%
dplyr::mutate(cluster = dplyr::if_else(.data$line == 1, 1, ifelse(
.data$cluster == 0, NA, .data$cluster)))
dendr$segments$cluster <- vapply(seq_len(NROW(dendr$segments$cluster)),
function(x) {
getCl(x, dendr$segments$cluster, change)}, FUN.VALUE = numeric(1))
# Correct order
labs <- c("N", OC(x))
dendr$segments$cluster <- factor(labs[dendr$segments$cluster])
# Make plot
ggplot() +
geom_segment(data = ggdendro::segment(dendr), aes_string(x = 'x', y = 'y',
xend = 'xend',
yend = 'yend',
color = 'cluster'),
size = 1.25) +
scale_color_manual(values = PARTCOL(),
name = "Haplotype",
breaks = LETTERS[seq_len(k)],
labels = LETTERS[seq_len(k)]) +
geom_hline(yintercept = cut.height, color = "blue") +
ggtitle("Initial clustering of haplotypes") +
theme_bw() +
theme(legend.position = "bottom",
axis.title = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank()
)
}, error = function(e){
flog.warn("Too many or too nested nodes for plotting a nice tree.",
name = "info")
return(NULL)
})
}
# Plot helper
getCl <- function(n, cluster, change) {
ifelse(!is.na(cluster[n]),
cluster[n],
cluster[change[max(which(change < n))]]
)
}
# Helper function for the plotting of radar charts
.coordRadar <- function(theta = "x", start = 0, direction = 1) {
theta <- match.arg(theta, c("x", "y"))
r <- if (theta == "x")
"y"
else "x"
ggproto("CoordRadar", CoordPolar, theta = theta, r = r, start = start,
direction = sign(direction),
is_linear = function(coord) TRUE)
}
# Optimal partitioning ----------------------------------------------------
.optimalPartitionLimits <- function(scores, pickiness = 0.8, lowerLimit = 60) {
## pickiness > 1: pick more reads
## pickiness < 1: pick less reads
score_range <- range(unlist(scores))
score_bins <- seq(score_range[1], score_range[2], length.out = 100)
#coeffCuts <- seq(0, max(unlist(scores)), length.out = 100)
rHap <- lapply(scores, function(x, score_bins) {
vapply(score_bins, function(cutoff) sum(x >= cutoff), FUN.VALUE = double(1))
}, score_bins = score_bins)
#hp <- "A"
df <- do.call(dplyr::bind_rows, Map(function(hp) {
l <- pickiness*length(unlist(scores[names(rHap) != hp]))/length(scores[[hp]])
tibble::tibble(haplotype = hp, nreads = rHap[[hp]], score = score_bins) %>%
dplyr::mutate(benefit = ((.data$nreads^l)*.data$score))
}, hp = names(rHap)))
dfmax <- df %>%
dplyr::group_by(haplotype) %>%
dplyr::filter(.data$benefit == max(.data$benefit))
if (any(dfmax$nreads < lowerLimit)) {
hp <- dfmax$haplotype[which(dfmax$nreads < lowerLimit)]
dfmax2 <- dplyr::filter(df, .data$haplotype %in% hp & .data$nreads >= lowerLimit) %>%
dplyr::group_by(.data$haplotype) %>%
dplyr::top_n(1, dplyr::desc(nreads)) %>%
dplyr::slice(1) ## in case of ties take only the top row
dfmax[dfmax$haplotype %in% hp, ] <- dfmax2
}
list(
limits = dfmax,
plt = ggplot(df, aes_(x = ~nreads, y = ~score, colour = ~haplotype)) +
geom_line() +
geom_point(data = dfmax, size = 3) +
ylab("Cluster similarity coefficient") +
xlab("N reads") +
theme_bw()
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.