# Constructor -------------------------------------------------------------
#' Calculate pileup for a BAM file.
#'
#' @param bamfile <\code{character}>; path to bamfile.
#' @param reffile <\code{character}>; Path to reference.
#' @param readtype <\code{character}>; one of "illumina", "pacbio", or "nanopore".
#' @param ... Additional parameters passed to \code{\link[Rsamtools]{PileupParam}}.
#' @inheritParams Rsamtools::PileupParam
#' @param pParam A \code{\link[Rsamtools]{PileupParam}} object.
#'
#' @details
#' Returns a \code{pileup} object:
#' A \code{list} with slots:
#' \describe{
#' \item{bamfile}{<character>; Path to the bamfile used to construct the
#' pileup}
#' \item{reffile}{<character>; Path to the reference used to construct the
#' bamfile}
#' \item{refname}{<character>; Name of the reference}
#' \item{readtype}{<character>; One of "illumina", "pacbio", or "nanopore"}
#' \item{param}{A \code{\link[Rsamtools]{PileupParam}} object}
#' \item{pilup}{A \code{tbl_df} with colums:
#' \describe{
#' \item{seqnames}{<character>; The RNAME field}
#' \item{pos}{<integer>; Genomic position of base}
#' \item{nucleotide}{<character>; Base}
#' \item{count}{<integer>; Count of base}
#' }
#' }
#' \item{consmat}{<consmat>; The consensus matrix}
#' \item{reads}{<character>; (optional) names of n top-scoring reads}
#' \item{stats}{<list>; Run statistics}
#' }
#'
#' @return A \code{pileup} object. See \code{Details}.
#' @export
#' @examples
#' ###
pileup <- function(bamfile, reffile, readtype, ..., pParam) {
bampath <- normalizePath(bamfile, mustWork = TRUE)
refpath <- normalizePath(reffile, mustWork = TRUE)
indent <- list(...)$indent %||% indentation()
if (missing(pParam)) {
param <- list(...)
if (is.null(param$distinguish_strands))
param$distinguish_strands <- FALSE
pParam <- do.call(Rsamtools::PileupParam, param)
}
assert_that(is(pParam, "PileupParam"))
bam <- Rsamtools::BamFile(bampath)
Rsamtools::open.BamFile(bam)
on.exit(Rsamtools::close.BamFile(bam))
if (Rsamtools::idxstatsBam(bam)$mapped == 0) {
flog.info("%sNo reads map to reference", indent(), name = "info")
stop("No reads map to reference")
}
sParam <- Rsamtools::ScanBamParam(
flag = Rsamtools::scanBamFlag(
isUnmappedQuery = FALSE,
isSecondaryAlignment = FALSE
),
which = IRanges::IRangesList()
)
pileup <- tibble::as_tibble(Rsamtools::pileup(
file = bam,
scanBamParam = sParam,
pileupParam = pParam))
refname <- GenomeInfoDb::seqnames(Rsamtools::seqinfo(bam))
Pileup_(refpath = refpath, bampath = bampath, param = pParam,
pileup = pileup, refname = refname, readtype = readtype)
}
# Helpers -----------------------------------------------------------------
.pileupFindInsertionPositions_ <- function(x, threshold = 0.20) {
cm <- consmat(x, freq = TRUE)
pos <- .ambiguousPositions(cm, threshold = threshold, ignoreInsertions = FALSE)
pos[cm[pos, "+"] > threshold]
}
.pileupGetInsertions_ <- function(x, threshold = 0.20, ...) {
indent <- list(...)$indent %||% indentation()
res <- list()
colnm <- colnames(consmat(x))
inpos <- .pileupFindInsertionPositions_(x, threshold)
inpos <- inpos[!inpos %in% 1:5]
inpos <- inpos[!inpos %in% (NROW(consmat(x)) - 5):NROW(consmat(x))]
if (length(inpos) > 0) {
inseqs <- .getInsertions(bamfile = bampath(x), inpos = inpos, readtype = readtype(x), indent = indent)
inseqs <- inseqs[order(as.integer(names(inseqs)))]
for (inseq in inseqs) {
if (length(inseq) < 100) {
inseq <- inseq[order(Biostrings::width(inseq))]
maxWidth <- max(Biostrings::width(inseq))
inseq0 <- inseq[inseq != "-"]
if (length(inseq0) > 2) {
gT <- data.frame(seq_along(inseq0))
inseq1 <- DECIPHER::AdjustAlignment(
DECIPHER::AlignSeqs(inseq0, verbose = FALSE,
iterations = 0, refinements = 0,
restrict = c(-500, 2, 10), normPower = 0)
)
inseq1 <- c(inseq1, Biostrings::DNAStringSet(
rep(paste0(rep.int("-", maxWidth), collapse = ""),
sum(inseq == "-"))
))
} else {
inseq1 <- inseq
}
} else {
# get biostringset which fills all positions with gaps where it is
# not complete, i.e. width is < max width
dels <- Biostrings::DNAStringSet(vapply(max(Biostrings::width(inseq)) -
Biostrings::width(inseq),
function(x) {
paste0(rep.int("-", x), collapse = "")
}, FUN.VALUE = ""))
# merge both biostrings so each seq is of same width
inseq1 <- Biostrings::xscat(inseq, dels)
}
cm <- t(Biostrings::consensusMatrix(inseq1))[, colnm, drop = FALSE]
cmf <- sweep(cm, 1, rowSums(cm), "/")
cmf[, "-"] <- 0
cm <- cm[apply(cmf, 1, function(row) any(row > threshold)), ,
drop = FALSE]
res <- c( res, list(cm) )
}
res
names(res) <- names(inseqs)
}
# Remove all empty positions for now!! ToDo: Better apply this to the initial
# ins pos calling in the python script
res <- Filter(length, res)
res
}
.pileupIncludeInsertions <- function(x, threshold = 0.2, ...) {
assert_that(is(x, "pileup"))
indent <- list(...)$indent %||% indentation()
if (!"+" %in% colnames(consmat(x))) {
flog.warn("%sNo insertions to call", indent(), name = "info")
return(x)
}
ins_ <- .pileupGetInsertions_(x, threshold, indent = indent)
if (length(ins_) == 0) {
flog.info("%sNo insertions found at threshold <%s>", indent(), threshold, name = "info")
return(x)
}
offsetBases <- 0L
insIdx <- integer()
insRun <- integer()
cm <- consmat(x, freq = FALSE)
cmAttr <- attributes(cm)
# cm[680:700,]
# i <- 1
for (i in seq_along(ins_)) {
j <- as.integer(names(ins_[i])) + offsetBases
cm[j, "+"] <- 0L
cm <- rbind(cm[1:j, ], ins_[[i]], cm[(j + 1):NROW(cm), ])
ins_[1]
insLen <- NROW(ins_[[i]])
insIdx <- c(insIdx, (j + 1):(j + insLen))
insRun <- c(insRun, rep(i, insLen))
offsetBases <- offsetBases + insLen
}
attr(insIdx, "run") <- insRun
cmAttr$dim <- dim(cm)
cmAttr$dimnames$pos <- as.character(seq_len(NROW(cm)))
cmAttr$n <- .rowSums(cm, NROW(cm), NCOL(cm))
cmAttr$insertions <- insIdx
attributes(cm) <- cmAttr
x$consmat <- cm
x
}
.msaFromBam <- function(bamfile, range = NULL, paddingLetter = "+") {
assert_that(
is(bamfile, "BamFile"),
is.null(range) || (is.numeric(range) && length(range) == 2 && range[1] <= range[2])
)
if (!Rsamtools::isOpen(bamfile)) {
Rsamtools::open.BamFile(bamfile)
on.exit(Rsamtools::close.BamFile(bamfile))
}
baminfo <- Rsamtools::seqinfo(bamfile)
param <- if (is.null(range)) {
GenomicRanges::GRanges(
seqnames = GenomeInfoDb::seqnames(baminfo),
ranges = IRanges::IRanges(start = 1L, end = GenomeInfoDb::seqlengths(baminfo)))
} else {
GenomicRanges::GRanges(
seqnames = GenomeInfoDb::seqnames(baminfo),
ranges = IRanges::IRanges(start = range[1], end = range[2]))
}
GenomicAlignments::stackStringsFromBam(
file = bamfile, index = bamfile, param = param,
Lpadding.letter = paddingLetter, Rpadding.letter = paddingLetter,
use.names = TRUE)
}
.pickTopXReads <- function(bamfile,
topx = "auto",
pickiness = 1,
lowerLimit = 200,
indelRate = NULL,
...) {
indent <- list(...)$indent %||% indentation()
msa <- .msaFromBam(Rsamtools::BamFile(bamfile))
## there is no point in sampling if
if (is.numeric(topx) && length(msa) <= topx) {
flog.info("%sNothing to pick from %s mapped longreads", indent(), length(msa), name = "info")
return(names(msa))
}
scores <- .PWMscore(msa, indelRate)
reads <- if (topx == "auto") {
.pickReads(scores, pickiness, lowerLimit)
} else {
dplyr::top_n(scores, topx, score)$read
}
flog.info("%sFrom %s mapped longreads extract the %0.3g%% (%s) top-scoring reads",
indent(), length(msa), 100*length(reads)/length(msa), length(reads),
name = "info")
reads
}
# Score multiple sequence alignment
# @param msa A DNAStringset
# @indelRate The estimated background rate of Indels
# @return A tibble with columns <read, score>
.PWMscore <- function(msa, indelRate = NULL) {
assert_that(is(msa, "XStringSet"))
pwm <- createPWM(msa, indelRate)
bpparam <- BiocParallel::MulticoreParam(workers = .getIdleCores())
do.call(dplyr::bind_rows, suppressWarnings(
BiocParallel::bplapply(seq_along(msa),
function(i, msa, pwm) {
tibble::tibble(read = names(msa[i]), score = .read_score(msa[[i]], pwm))
}, msa = msa, pwm = pwm, BPPARAM = bpparam)))
}
.read_score <- function(read, pwm) {
## expect read to be a DNAString or DNAStringSet instance
n <- NROW(pwm)
m <- NCOL(pwm)
read <- strsplit(as.character(read), split = "")[[1L]]
i <- match(read, rownames(pwm)) + ((0:(m - 1))*n)
sum(pwm[i], na.rm = TRUE)/m
}
## TODO: think about this more carefully
.pickReads <- function(x, pickiness = 1, lowerLimit = 200) {
## pickiness > 1: pick more reads
## pickiness < 1: pick less reads
score_range <- range(x$score)
score_bin_lows <- seq(score_range[1], score_range[2], length.out = 100)[-100]
cum_read_distr <- vapply(score_bin_lows, function(bin_low)
sum(x$score >= bin_low), FUN.VALUE = double(1L))
value <- (cum_read_distr^pickiness)*score_bin_lows
opt_cut <- score_bin_lows[which.max(value)]
##
df <- tibble::tibble(
nreads = cum_read_distr,
score = score_bin_lows,
value = rescale(value, score_range[1], score_range[2]),
pick = ifelse(score_bin_lows >= opt_cut, "yes", "no")
)
plt0 <- ggplot(df, aes(x = nreads, y = score, colour = pick)) +
geom_point() +
geom_line(aes(y = value)) +
labs(x = "cumulative #reads [r]", y = "Minimum PWM sequence score [c]") +
theme_bw() +
theme(legend.position = "bottom")
##
if (sum(x$score >= opt_cut) < lowerLimit) {
picked_reads <- dplyr::top_n(x, lowerLimit, .data$score)$read
} else {
picked_reads <- dplyr::filter(x, .data$score >= opt_cut)$read
}
##
attr(picked_reads, "pickiness") <- pickiness
attr(picked_reads, "lowerLimit") <- lowerLimit
attr(picked_reads, "plot") <- plt0
##
picked_reads
}
# Summarise and plot ------------------------------------------------------
#' Plot pileup coverage
#'
#' @param x A \code{pileup} object.
#' @param threshold At which frequency do we visualise polymorphisms.
#' @param range Which part along the x-axis do we plot.
#' @param thin Plot only a fraction of the (non-polymorphic) positions.
#' @param width Width of polymorphic positions.
#' @param label Optional plot label.
#' @param drop.indels Don't plot indels.
#'
#' @return A \code{ggplot} object.
#' @export
#' @examples
#' ###
plotPileupCoverage <- function(x, threshold = 0.2, range = NULL, thin = 0.1,
width = 1, label = "", drop.indels = FALSE) {
assert_that(is(x, "pileup"))
x <- data.table::as.data.table(x$pileup)
if (drop.indels) {
x <- x[nucleotide != "-" & nucleotide != "+"]
}
if (!is.null(range)) {
x <- x[pos >= range[1] & pos <= range[2]]
}
x[, nucleotide := as.character(nucleotide)]
x[, freq := count/sum(count), by = pos]
x[nucleotide == "-" & nucleotide == "+", npoly := sum(freq >= max(
c(threshold, 0.3))), by = pos]
x[nucleotide != "-" & nucleotide != "+", npoly := sum(freq >= max(
c(threshold, 0.2))), by = pos]
#x
x[npoly == 1 | (npoly > 1 & freq < threshold), nucleotide := " ", by = pos]
nonpoly <- x[npoly == 1, unique(pos)]
nonpolyThin <- nonpoly[seq(1, length(nonpoly),
floor(length(nonpoly)/(length(nonpoly)*thin)))]
dt <- x[, list(count = sum(count)), by = list(pos, nucleotide)]
dtbg <- dt[pos %in% nonpolyThin]
dtpoly <- dt[!pos %in% nonpoly][order(pos, nucleotide)]
dtpoly[, nucleotide := factor(nucleotide,
levels = c("+", "-", "A", "C", "G", "T", " "),
labels = c("+", "-", "A", "C", "G", "T", " "),
ordered = TRUE)]
data.table::setkeyv(dtpoly, c("pos", "nucleotide"))
## Set the width for neighbouring SNPs to 1
positions <- dtpoly$pos
closePositions <- sort(unique(c(which((positions - 1) %in% positions),
which((positions + 1) %in% positions))))
dtpoly$width <- width
dtpoly[closePositions]$width <- 1
## suppress warning because of potentially overlapping x intervals
p <- ggplot(dtbg, aes(x = pos, y = count)) +
geom_bar(stat = "identity", position = position_stack(), fill = "grey80") +
geom_bar(aes(fill = nucleotide), data = dtpoly, stat = "identity",
position = position_stack(), width = dtpoly$width) +
scale_fill_manual(values = NUCCOL(), limits = c("G", "A", "T", "C", "-", "+")) +
guides(fill = guide_legend(reverse = TRUE, title = "Bases")) +
labs(x = "Position [bp]", y = "Count", fill = "Nucleotide", title = label) +
theme_bw(base_size = 12) +
theme(
panel.border = element_blank(),
panel.grid = element_blank(),
axis.line = element_line(colour = "grey50")
)
p
}
#' Plot basecall frequency
#'
#' @param x A \code{pileup} object.
#' @param threshold At which frequency do we visualise polymorphisms.
#' @param label Optional plot label.
#' @param drop.indels Don't plot indels.
#'
#' @return A \code{ggplot} object.
#' @export
#' @examples
#' ###
plotPileupBasecallFrequency <- function(x, threshold = 0.20, label = "",
drop.indels = FALSE) {
cm <- consmat(x, freq = FALSE)
if (drop.indels && "-" %in% colnames(cm)) {
cm[, "-"] <- 0
}
if (drop.indels && "+" %in% colnames(cm)) {
cm[, "+"] <- 0
}
cmlong <- dplyr::filter(as.data.frame(consmat(cm, freq = TRUE)), freq > 0)
## TOOD check alpha change
ggplot(cmlong, aes(x =~ pos, y =~ freq, colour =~ nucleotide)) +
geom_point(aes(alpha =~ ifelse(freq > threshold, 0.4, 0.2)), size = 0.75,
shape = 15) +
scale_color_manual(values = NUCCOL()) +
scale_alpha_continuous(guide = FALSE) +
guides(colour = guide_legend(title = "Bases")) +
scale_y_log10() +
geom_hline(yintercept = threshold, colour = "grey20", size = 0.25) +
geom_hline(yintercept = 0.5, linetype = "dashed", colour = "grey20",
size = 0.75) +
labs(x = "Position [bp]", y = "Base frequency", title = label) +
theme_bw(base_size = 12) +
theme(
panel.border = element_blank(),
axis.line = element_line(colour = "grey50")
)
}
.getInsertions <- function(bamfile, inpos, readtype = "illumina", reads = NULL, ...) {
assert_that(is.numeric(inpos))
inpos <- sort(inpos)
indent <- list(...)$indent %||% indentation()
flog.info("%sCall insertions at positions <%s>", indent(), comma(inpos), name = "info")
## Get the actual position of the first insertion character, not the last
## matching position, so +1
inpos <- inpos + 1
bam <- Rsamtools::BamFile(bamfile)
Rsamtools::open.BamFile(bam)
on.exit(Rsamtools::close.BamFile(bam))
baminfo <- GenomicRanges::seqinfo(bam)
inposRanges <- if (readtype == "illumina") {
GenomicRanges::GRanges(
seqnames = GenomeInfoDb::seqnames(baminfo),
ranges = IRanges::IRanges(start = inpos, end = inpos))
} else {
GenomicRanges::GRanges(
seqnames = GenomeInfoDb::seqnames(baminfo),
ranges = IRanges::IRanges(start = 1, end = GenomeInfoDb::seqlengths(baminfo)))
}
bamParam <- Rsamtools::ScanBamParam(what = "seq", which = inposRanges)
aln <- GenomicAlignments::readGAlignments(bam, param = bamParam, use.names = TRUE)
## Use only reads of interest if specified
if (!is.null(reads))
aln <- aln[names(aln) %in% reads]
## Use only reads with an insertion
readsWithIns <- vapply(GenomicAlignments::cigar(aln),
function(x) grepl("I", x),
FUN.VALUE = logical(1))
alnI <- aln[readsWithIns]
## Get all insertions from all reads
## TODO: bplapply throws warning in serialize(data, node$con, xdr = FALSE)
## 'package:stats' may not be available when loading
## For the time being we suppress this warning
bpparam <- BiocParallel::MulticoreParam(workers = .getIdleCores())
insSeq <- unlist(Biostrings::DNAStringSetList(suppressWarnings(
BiocParallel::bplapply(seq_along(alnI), function(a, alnI, inpos) {
.extractInsertion(alnI[a], inpos)
}, alnI = alnI, inpos = inpos, BPPARAM = bpparam))))
## Extract per positions
insSeqs <- foreach(i = inpos) %do% {
#message("Position: ", i)
insSeq[which(names(insSeq) == i)]
}
## decrement to last matching position again to work as expected with
## downstream
names(insSeqs) <- inpos - 1
insSeqs <- insSeqs[vapply(insSeqs, function(x)
length(unlist(x)) > 0, FUN.VALUE = logical(1))]
insSeqs
}
.extractInsertion <- function(read, inpos) {
cigar <- read@cigar
## map insertion position to reference space, get insertions from query space
insertionQ <- GenomicAlignments::cigarRangesAlongQuerySpace(
cigar, ops = "I")[[1]]
insertionR <- GenomicAlignments::cigarRangesAlongReferenceSpace(
cigar, ops = "I")[[1]]
qPos <- GenomicAlignments::start(read) + insertionR@start - 1
foundPositions <- which(qPos %in% inpos)
fInPos <- qPos[foundPositions]
insertPos <- insertionQ[foundPositions]
if (length(insertPos) > 0) {
seq <- unlist(Biostrings::DNAStringSetList(lapply(seq_along(insertPos),
function(ip) {
ipp <- insertPos[ip]
Biostrings::subseq(read@elementMetadata$seq,
start = IRanges::start(ipp),
end = IRanges::end(ipp))
})))
names(seq) <- fInPos
return(seq)
}
Biostrings::DNAStringSet("-")
}
.checkCoverage <- function(pileup, forceMapping, plotFile, maptag, ...) {
indent <- list(...)$indent %||% indentation()
flog.warn("%sShortreads seem corrupted or the reference is bad!", indent(), name = "info")
maxCov <- max(rowSums(consmat(pileup, freq = FALSE)))
q75Cov <- quantile(rowSums(consmat(pileup, freq = FALSE)), 0.75)
flog.warn("%sMaximum of coverage %s / 75%% quantile %s: %s > 5." %<<%
" No equal distribution of coverage!" %<<%
" Have a look at the mapInit plot",
indent(), maxCov, q75Cov, maxCov/q75Cov, name = "info")
plt <- plotPileupCoverage(
x = pileup,
thin = 0.25,
width = 2,
label = maptag,
drop.indels = TRUE
)
flog.error("%sAborting. If you want to force processing set" %<<%
" forceMapping = TRUE in DR2S object initialisation", indent(), name = "info")
save_plot(plotFile, plt, base_aspect_ratio = 3,
onefile = TRUE)
if (!forceMapping) {
stop("Shortreads probably of bad quality. Bad coverage distribution.
Run with forceMapping = TRUE to force processing.")
} else {
flog.warn("%sContinue. Be aware that resulsts may not be correct!!", indent(), name = "info")
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.