View source: R/compute_supercells_clustering.R
Plot clustering consistency
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | plot_clustering_consistency(
clust.consistency.df,
consistency.index.name = "ARI",
min.value.alt.clustering = 0,
error_bars = c("extr", "quartiles", "sd")[1],
fig.name = "",
to.save.plot = TRUE,
to.save.plot.raw = FALSE,
asp = 0.5,
fig.folder = "./plots",
ignore.gammas = c(),
ignore.methods = c(),
.shapes = c(Exact = 1, Approx = 0, Subsampling = 2, Random = 3, Metacell_default_fp =
4, Metacell_default_av = 8, Metacell_SC_like_fp = 4, Metacell_SC_like_av = 8,
Alternative = 23),
.colors = c(Exact = "darkred", Approx = "royalblue", Subsampling = "black", Random =
"gray", Metacell_default_fp = "forestgreen", Metacell_default_av = "forestgreen",
Metacell_SC_like_fp = "gold", Metacell_SC_like_av = "gold", Alternative = "darkblue"),
verbose = FALSE,
...
)
|
clust.consistency.df |
output of compute_consistency_of_supercell_clustering |
consistency.index.name |
name of the consistency index (output of clustComp) |
min.value.alt.clustering |
min index value for the alternative clustering consistency |
error_bars |
name of values used for errorbars (for subsampling, random grouping,
alternative clusteting of single cells and other methods with more than one clustering/simplification output).
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.