compute_alternative_clustering: Compute alternative clustering at single-cell level

Description Usage Arguments Value

View source: R/compute_supercells_clustering.R

Description

Compute alternative clustering at single-cell level

Usage

1
2
3
4
5
6
7
8
9
compute_alternative_clustering(
  sc.pca,
  N.comp = 10,
  N.clusters.seq = c(2:10),
  hclust_methods = c("ward.D", "ward.D2", "single", "complete", "average", "mcquitty",
    "median", "centroid"),
  other_clust_funcs = list(kmeans = kmeans),
  seed.seq = c(12346, 111, 19, 42, 7)
)

Arguments

sc.pca

PCA matrix or high dimensional matrix (cells as rows and coordinates/genes as columns)

N.comp

number or vector of PCs to use

N.clusters.seq

vector of number of clusters to compute

hclust_methods

a vector of method parameter form hclust

other_clust_funcs

list of ther clustering functions (in a format of kmeans)

Value

list of clusterings res in a format res[["number_of_clusters"]][["clustering_method[_random_seed]"]]


mariiabilous/SuperCellBM documentation built on Jan. 28, 2022, 7:45 p.m.