mlr_learners_dens.kde_ks: Density KS Kernel Learner

mlr_learners_dens.kde_ksR Documentation

Density KS Kernel Learner

Description

Kernel density estimator. Calls ks::kde() from ks.

Dictionary

This Learner can be instantiated via lrn():

lrn("dens.kde_ks")

Meta Information

Parameters

Id Type Default Levels Range
h numeric - [0, \infty)
H untyped - -
gridsize untyped - -
gridtype untyped - -
xmin numeric - (-\infty, \infty)
xmax numeric - (-\infty, \infty)
supp numeric 3.7 (-\infty, \infty)
binned numeric - (-\infty, \infty)
bgridsize untyped - -
positive logical FALSE TRUE, FALSE -
adj.positive untyped - -
w untyped - -
compute.cont logical TRUE TRUE, FALSE -
approx.cont logical TRUE TRUE, FALSE -
unit.interval logical FALSE TRUE, FALSE -
verbose logical FALSE TRUE, FALSE -
density logical FALSE TRUE, FALSE -

Super classes

mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensKDEks

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerDensKDEks$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerDensKDEks$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Gramacki, Artur, Gramacki, Jarosław (2017). “FFT-based fast computation of multivariate kernel density estimators with unconstrained bandwidth matrices.” Journal of Computational and Graphical Statistics, 26(2), 459–462.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("dens.kde_ks")
print(learner)

# Define a Task
task = mlr3::tsk("faithful")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Dec. 21, 2024, 2:21 p.m.