mlr_learners_dens.locfit: Density Locfit Learner

mlr_learners_dens.locfitR Documentation

Density Locfit Learner

Description

Local density estimation. Calls locfit::density.lf() from locfit.

Dictionary

This Learner can be instantiated via lrn():

lrn("dens.locfit")

Meta Information

Parameters

Id Type Default Levels Range
window character gaus tcub, rect, trwt, tria, epan, bisq, gaus -
width numeric - (-\infty, \infty)
from numeric - (-\infty, \infty)
to numeric - (-\infty, \infty)
cut numeric - (-\infty, \infty)
deg numeric 0 (-\infty, \infty)
link character ident ident, log, logit, inverse, sqrt, arcsin -
kern character tcub rect, trwt, tria, epan, bisq, gauss, tcub -
kt character sph sph, prod -
renorm logical FALSE TRUE, FALSE -
maxk integer 100 [0, \infty)
itype character - prod, mult, mlin, haz -
mint integer 20 [1, \infty)
maxit integer 20 [1, \infty)

Super classes

mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensLocfit

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerDensLocfit$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerDensLocfit$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Loader, Clive (2006). Local regression and likelihood. Springer Science & Business Media.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("dens.locfit")
print(learner)

# Define a Task
task = mlr3::tsk("faithful")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Nov. 11, 2024, 11:11 a.m.