mlr_learners_dens.logspline: Density Logspline Learner

mlr_learners_dens.logsplineR Documentation

Density Logspline Learner

Description

Density logspline learner. Calls logspline::logspline() from logspline.

Dictionary

This Learner can be instantiated via lrn():

lrn("dens.logspline")

Meta Information

Parameters

Id Type Default Levels Range
lbound numeric - (-\infty, \infty)
ubound numeric - (-\infty, \infty)
maxknots numeric 0 [0, \infty)
knots untyped - -
nknots numeric 0 [0, \infty)
penalty untyped - -
silent logical TRUE TRUE, FALSE -
mind numeric -1 (-\infty, \infty)
error.action integer 2 [0, 2]

Super classes

mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensLogspline

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerDensLogspline$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerDensLogspline$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Kooperberg, Charles, Stone, J C (1992). “Logspline density estimation for censored data.” Journal of Computational and Graphical Statistics, 1(4), 301–328.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("dens.logspline")
print(learner)

# Define a Task
task = mlr3::tsk("faithful")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Dec. 21, 2024, 2:21 p.m.