mlr_learners_dens.logspline | R Documentation |
Density logspline learner.
Calls logspline::logspline()
from logspline.
This Learner can be instantiated via lrn():
lrn("dens.logspline")
Task type: “dens”
Predict Types: “pdf”, “cdf”
Feature Types: “integer”, “numeric”
Required Packages: mlr3, mlr3proba, mlr3extralearners, logspline
Id | Type | Default | Levels | Range |
lbound | numeric | - | (-\infty, \infty) |
|
ubound | numeric | - | (-\infty, \infty) |
|
maxknots | numeric | 0 | [0, \infty) |
|
knots | untyped | - | - | |
nknots | numeric | 0 | [0, \infty) |
|
penalty | untyped | - | - | |
silent | logical | TRUE | TRUE, FALSE | - |
mind | numeric | -1 | (-\infty, \infty) |
|
error.action | integer | 2 | [0, 2] |
|
mlr3::Learner
-> mlr3proba::LearnerDens
-> LearnerDensLogspline
new()
Creates a new instance of this R6 class.
LearnerDensLogspline$new()
clone()
The objects of this class are cloneable with this method.
LearnerDensLogspline$clone(deep = FALSE)
deep
Whether to make a deep clone.
RaphaelS1
Kooperberg, Charles, Stone, J C (1992). “Logspline density estimation for censored data.” Journal of Computational and Graphical Statistics, 1(4), 301–328.
Dictionary of Learners: mlr3::mlr_learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
# Define the Learner
learner = mlr3::lrn("dens.logspline")
print(learner)
# Define a Task
task = mlr3::tsk("faithful")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.