mlr_learners_dens.mixed: Density Mixed Data Kernel Learner

mlr_learners_dens.mixedR Documentation

Density Mixed Data Kernel Learner

Description

Density estimator for discrete and continuous variables. Calls np::npudens() from np.

Dictionary

This Learner can be instantiated via lrn():

lrn("dens.mixed")

Meta Information

Parameters

Id Type Default Levels Range
bws untyped - -
ckertype character gaussian gaussian, epanechnikov, uniform -
bwscaling logical FALSE TRUE, FALSE -
bwmethod character cv.ml cv.ml, cv.ls, normal-reference -
bwtype character fixed fixed, generalized_nn, adaptive_nn -
bandwidth.compute logical FALSE TRUE, FALSE -
ckerorder integer 2 [2, 8]
remin logical TRUE TRUE, FALSE -
itmax integer 10000 [1, \infty)
nmulti integer - [1, \infty)
ftol numeric 1.490116e-07 (-\infty, \infty)
tol numeric 0.0001490116 (-\infty, \infty)
small numeric 1.490116e-05 (-\infty, \infty)
lbc.dir numeric 0.5 (-\infty, \infty)
dfc.dir numeric 0.5 (-\infty, \infty)
cfac.dir untyped 2.5 * (3 - sqrt(5)) -
initc.dir numeric 1 (-\infty, \infty)
lbd.dir numeric 0.1 (-\infty, \infty)
hbd.dir numeric 1 (-\infty, \infty)
dfac.dir untyped 0.25 * (3 - sqrt(5)) -
initd.dir numeric 1 (-\infty, \infty)
lbc.init numeric 0.1 (-\infty, \infty)
hbc.init numeric 2 (-\infty, \infty)
cfac.init numeric 0.5 (-\infty, \infty)
lbd.init numeric 0.1 (-\infty, \infty)
hbd.init numeric 0.9 (-\infty, \infty)
dfac.init numeric 0.37 (-\infty, \infty)
ukertype character - aitchisonaitken, liracine -
okertype character - wangvanryzin, liracine -

Super classes

mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensMixed

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerDensMixed$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerDensMixed$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Li, Qi, Racine, Jeff (2003). “Nonparametric estimation of distributions with categorical and continuous data.” journal of multivariate analysis, 86(2), 266–292.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("dens.mixed")
print(learner)

# Define a Task
task = mlr3::tsk("faithful")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Jan. 4, 2025, 5:02 p.m.