mlr_learners_dens.mixed | R Documentation |
Density estimator for discrete and continuous variables.
Calls np::npudens()
from np.
This Learner can be instantiated via lrn():
lrn("dens.mixed")
Task type: “dens”
Predict Types: “pdf”
Feature Types: “integer”, “numeric”
Required Packages: mlr3, mlr3proba, mlr3extralearners, np
Id | Type | Default | Levels | Range |
bws | untyped | - | - | |
ckertype | character | gaussian | gaussian, epanechnikov, uniform | - |
bwscaling | logical | FALSE | TRUE, FALSE | - |
bwmethod | character | cv.ml | cv.ml, cv.ls, normal-reference | - |
bwtype | character | fixed | fixed, generalized_nn, adaptive_nn | - |
bandwidth.compute | logical | FALSE | TRUE, FALSE | - |
ckerorder | integer | 2 | [2, 8] |
|
remin | logical | TRUE | TRUE, FALSE | - |
itmax | integer | 10000 | [1, \infty) |
|
nmulti | integer | - | [1, \infty) |
|
ftol | numeric | 1.490116e-07 | (-\infty, \infty) |
|
tol | numeric | 0.0001490116 | (-\infty, \infty) |
|
small | numeric | 1.490116e-05 | (-\infty, \infty) |
|
lbc.dir | numeric | 0.5 | (-\infty, \infty) |
|
dfc.dir | numeric | 0.5 | (-\infty, \infty) |
|
cfac.dir | untyped | 2.5 * (3 - sqrt(5)) | - | |
initc.dir | numeric | 1 | (-\infty, \infty) |
|
lbd.dir | numeric | 0.1 | (-\infty, \infty) |
|
hbd.dir | numeric | 1 | (-\infty, \infty) |
|
dfac.dir | untyped | 0.25 * (3 - sqrt(5)) | - | |
initd.dir | numeric | 1 | (-\infty, \infty) |
|
lbc.init | numeric | 0.1 | (-\infty, \infty) |
|
hbc.init | numeric | 2 | (-\infty, \infty) |
|
cfac.init | numeric | 0.5 | (-\infty, \infty) |
|
lbd.init | numeric | 0.1 | (-\infty, \infty) |
|
hbd.init | numeric | 0.9 | (-\infty, \infty) |
|
dfac.init | numeric | 0.37 | (-\infty, \infty) |
|
ukertype | character | - | aitchisonaitken, liracine | - |
okertype | character | - | wangvanryzin, liracine | - |
mlr3::Learner
-> mlr3proba::LearnerDens
-> LearnerDensMixed
new()
Creates a new instance of this R6 class.
LearnerDensMixed$new()
clone()
The objects of this class are cloneable with this method.
LearnerDensMixed$clone(deep = FALSE)
deep
Whether to make a deep clone.
RaphaelS1
Li, Qi, Racine, Jeff (2003). “Nonparametric estimation of distributions with categorical and continuous data.” journal of multivariate analysis, 86(2), 266–292.
Dictionary of Learners: mlr3::mlr_learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
# Define the Learner
learner = mlr3::lrn("dens.mixed")
print(learner)
# Define a Task
task = mlr3::tsk("faithful")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.