mlr_learners_dens.nonpar: Density Nonparametric Learner

mlr_learners_dens.nonparR Documentation

Density Nonparametric Learner

Description

Nonparametric density estimation. Calls sm::sm.density() from sm.

Dictionary

This Learner can be instantiated via lrn():

lrn("dens.nonpar")

Meta Information

Parameters

Id Type Default Levels Range
h numeric - (-\infty, \infty)
group untyped - -
delta numeric - (-\infty, \infty)
h.weights numeric 1 (-\infty, \infty)
hmult untyped 1 -
method character normal normal, cv, sj, df, aicc -
positive logical FALSE TRUE, FALSE -
verbose untyped 1 -

Super classes

mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensNonparametric

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerDensNonparametric$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerDensNonparametric$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Bowman, A.W., Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations, series Oxford Statistical Science Series. OUP Oxford. ISBN 9780191545696, https://books.google.de/books?id=7WBMrZ9umRYC.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("dens.nonpar")
print(learner)

# Define a Task
task = mlr3::tsk("faithful")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Nov. 11, 2024, 11:11 a.m.