mlr_learners_dens.plug: Density Plug-In Kernel Learner

mlr_learners_dens.plugR Documentation

Density Plug-In Kernel Learner

Description

Kernel density estimation with global bandwidth selection via "plug-in". Calls plugdensity::plugin.density() from plugdensity.

Dictionary

This Learner can be instantiated via lrn():

lrn("dens.plug")

Meta Information

Parameters

Id Type Default Levels
na.rm logical FALSE TRUE, FALSE

Super classes

mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensPlugin

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerDensPlugin$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerDensPlugin$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Engel, Joachim, Herrmann, Eva, Gasser, Theo (1994). “An iterative bandwidth selector for kernel estimation of densities and their derivatives.” Journaltitle of Nonparametric Statistics, 4(1), 21–34.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("dens.plug")
print(learner)

# Define a Task
task = mlr3::tsk("faithful")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Jan. 4, 2025, 5:02 p.m.