mlr_learners_dens.spline: Density Smoothing Splines Learner

mlr_learners_dens.splineR Documentation

Density Smoothing Splines Learner

Description

Density Smoothing Splines Learner. Calls gss::ssden() from gss.

Dictionary

This Learner can be instantiated via lrn():

lrn("dens.spline")

Meta Information

Parameters

Id Type Default Levels Range
type untyped - -
alpha numeric 1.4 (-\infty, \infty)
weights untyped - -
na.action untyped stats::na.omit -
id.basis untyped - -
nbasis integer - (-\infty, \infty)
seed numeric - (-\infty, \infty)
domain untyped - -
quad untyped - -
qdsz.depth numeric - (-\infty, \infty)
bias untyped - -
prec numeric 1e-07 (-\infty, \infty)
maxiter integer 30 [1, \infty)
skip.iter logical - TRUE, FALSE -

Super classes

mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensSpline

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerDensSpline$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerDensSpline$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Gu, Chong, Wang, Jingyuan (2003). “Penalized likelihood density estimation: Direct cross-validation and scalable approximation.” Statistica Sinica, 811–826.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("dens.spline")
print(learner)

# Define a Task
task = mlr3::tsk("faithful")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Jan. 4, 2025, 5:02 p.m.