mlr_learners_regr.bart | R Documentation |
Bayesian Additive Regression Trees are similar to gradient boosting algorithms.
Calls dbarts::bart()
from dbarts.
This Learner can be instantiated via lrn():
lrn("regr.bart")
Task type: “regr”
Predict Types: “response”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, dbarts
Id | Type | Default | Levels | Range |
ntree | integer | 200 | [1, \infty) |
|
sigest | untyped | NULL | - | |
sigdf | integer | 3 | [1, \infty) |
|
sigquant | numeric | 0.9 | [0, 1] |
|
k | numeric | 2 | [0, \infty) |
|
power | numeric | 2 | [0, \infty) |
|
base | numeric | 0.95 | [0, 1] |
|
ndpost | integer | 1000 | [1, \infty) |
|
nskip | integer | 100 | [0, \infty) |
|
printevery | integer | 100 | [0, \infty) |
|
keepevery | integer | 1 | [1, \infty) |
|
keeptrainfits | logical | TRUE | TRUE, FALSE | - |
usequants | logical | FALSE | TRUE, FALSE | - |
numcut | integer | 100 | [1, \infty) |
|
printcutoffs | integer | 0 | (-\infty, \infty) |
|
verbose | logical | FALSE | TRUE, FALSE | - |
nthread | integer | 1 | (-\infty, \infty) |
|
keeptrees | logical | FALSE | TRUE, FALSE | - |
keepcall | logical | TRUE | TRUE, FALSE | - |
sampleronly | logical | FALSE | TRUE, FALSE | - |
seed | integer | NA | (-\infty, \infty) |
|
proposalprobs | untyped | NULL | - | |
splitprobs | untyped | NULL | - | |
keepsampler | logical | - | TRUE, FALSE | - |
Parameter: offset
The parameter is removed, because only dbarts::bart2
allows an offset during training,
and therefore the offset parameter in dbarts:::predict.bart
is irrelevant for
dbarts::dbart
.
Parameter: nchain
, combineChains
, combinechains
The parameters are removed as parallelization of multiple models is handled by future.
keeptrees
is initialized to TRUE
because it is required for prediction.
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrBart
new()
Creates a new instance of this R6 class.
LearnerRegrBart$new()
clone()
The objects of this class are cloneable with this method.
LearnerRegrBart$clone(deep = FALSE)
deep
Whether to make a deep clone.
ck37
Sparapani, Rodney, Spanbauer, Charles, McCulloch, Robert (2021). “Nonparametric machine learning and efficient computation with bayesian additive regression trees: the BART R package.” Journal of Statistical Software, 97, 1–66.
Chipman, A H, George, I E, McCulloch, E R (2010). “BART: Bayesian additive regression trees.” The Annals of Applied Statistics, 4(1), 266–298.
Dictionary of Learners: mlr3::mlr_learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
# Define the Learner
learner = mlr3::lrn("regr.bart")
print(learner)
# Define a Task
task = mlr3::tsk("mtcars")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.