mlr_learners_regr.cubist: Regression Cubist Learner

mlr_learners_regr.cubistR Documentation

Regression Cubist Learner

Description

Rule-based model that is an extension of Quinlan's M5 model tree. Each tree contains linear regression models at the terminal leaves. Calls Cubist::cubist() from Cubist.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.cubist")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”, “character”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, Cubist

Parameters

Id Type Default Levels Range
committees integer - [1, 100]
unbiased logical FALSE TRUE, FALSE -
rules integer 100 [1, \infty)
extrapolation numeric 100 [0, 100]
sample integer 0 [0, \infty)
seed integer - (-\infty, \infty)
label untyped "outcome" -
neighbors integer - [0, 9]

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrCubist

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrCubist$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrCubist$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

sumny

References

Quinlan, R J, others (1992). “Learning with continuous classes.” In 5th Australian joint conference on artificial intelligence, volume 92, 343–348. World Scientific.

Quinlan, Ross J (1993). “Combining instance-based and model-based learning.” In Proceedings of the tenth international conference on machine learning, 236–243.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("regr.cubist")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Nov. 11, 2024, 11:11 a.m.