mlr_learners_regr.decision_table: Regression Decision Table Learner

mlr_learners_regr.decision_tableR Documentation

Regression Decision Table Learner

Description

Simple Decision Table majority regressor. Calls RWeka::make_Weka_classifier() from RWeka.

Initial parameter values

  • E:

    • Has only 2 out of 4 original evaluation measures : rmse and mae with rmse being the default

    • Reason for change: this learner should only contain evaluation measures appropriate for regression tasks

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • P_best:

    • original id: P

  • D_best:

    • original id: D

  • N_best:

    • original id: N

  • S_best:

    • original id: S

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.decision_table")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
S character BestFirst BestFirst, GreedyStepwise -
X integer 1 (-\infty, \infty)
E character rmse rmse, mae -
I logical - TRUE, FALSE -
R logical - TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1, \infty)
batch_size integer 100 [1, \infty)
P_best untyped - -
D_best character 1 0, 1, 2 -
N_best integer - (-\infty, \infty)
S_best integer 1 (-\infty, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrDecisionTable

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrDecisionTable$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrDecisionTable$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

References

Kohavi R (1995). “The Power of Decision Tables.” In 8th European Conference on Machine Learning, 174–189.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("regr.decision_table")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Dec. 21, 2024, 2:21 p.m.