mlr_learners_regr.gamboost: Boosted Generalized Additive Regression Learner

mlr_learners_regr.gamboostR Documentation

Boosted Generalized Additive Regression Learner

Description

Fit a generalized additive regression model using a boosting algorithm. Calls mboost::gamboost() from mboost.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.gamboost")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, mboost

Parameters

Id Type Default Levels Range
baselearner character bbs bbs, bols, btree -
dfbase integer 4 (-\infty, \infty)
offset numeric NULL (-\infty, \infty)
family character Gaussian Gaussian, Laplace, Huber, Poisson, GammaReg, NBinomial, Hurdle, custom -
custom.family untyped - -
nuirange untyped c(0, 100) -
d numeric NULL (-\infty, \infty)
mstop integer 100 (-\infty, \infty)
nu numeric 0.1 (-\infty, \infty)
risk character inbag inbag, oobag, none -
oobweights untyped NULL -
trace logical FALSE TRUE, FALSE -
stopintern untyped FALSE -
na.action untyped stats::na.omit -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrGAMBoost

Methods

Public methods

Inherited methods

Method new()

Create a LearnerRegrGAMBoost object.

Usage
LearnerRegrGAMBoost$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrGAMBoost$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

be-marc

References

Bühlmann, Peter, Yu, Bin (2003). “Boosting with the L 2 loss: regression and classification.” Journal of the American Statistical Association, 98(462), 324–339.

See Also

Examples

# Define the Learner
learner = lrn("regr.gamboost", baselearner = "bols")
print(learner)

mlr-org/mlr3extralearners documentation built on Nov. 11, 2024, 11:11 a.m.