mlr_learners_regr.gbm: Regression Gradient Boosting Machine Learner

mlr_learners_regr.gbmR Documentation

Regression Gradient Boosting Machine Learner

Description

Gradient Boosting Regression Algorithm. Calls gbm::gbm() from gbm.

Weights are ignored for quantile prediction.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.gbm")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”, “quantiles”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, gbm

Parameters

Id Type Default Levels Range
distribution character gaussian gaussian, laplace, poisson, tdist -
n.trees integer 100 [1, \infty)
interaction.depth integer 1 [1, \infty)
n.minobsinnode integer 10 [1, \infty)
shrinkage numeric 0.001 [0, \infty)
bag.fraction numeric 0.5 [0, 1]
train.fraction numeric 1 [0, 1]
cv.folds integer 0 (-\infty, \infty)
keep.data logical FALSE TRUE, FALSE -
verbose logical FALSE TRUE, FALSE -
n.cores integer 1 (-\infty, \infty)
var.monotone untyped - -

Parameter changes

  • keep.data:

    • Actual default: TRUE

    • Adjusted default: FALSE

    • Reason for change: keep.data = FALSE saves memory during model fitting.

  • n.cores:

    • Actual default: NULL

    • Adjusted default: 1

    • Reason for change: Suppressing the automatic internal parallelization if cv.folds > 0.

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrGBM

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrGBM$new()

Method importance()

The importance scores are extracted by gbm::relative.influence() from the model.

Usage
LearnerRegrGBM$importance()
Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrGBM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

be-marc

References

Friedman, H J (2002). “Stochastic gradient boosting.” Computational statistics & data analysis, 38(4), 367–378.

See Also

Examples

# Define the Learner
learner = lrn("regr.gbm")
print(learner)

mlr-org/mlr3extralearners documentation built on Dec. 21, 2024, 2:21 p.m.