mlr_learners_regr.lightgbm: Regression LightGBM Learner

mlr_learners_regr.lightgbmR Documentation

Regression LightGBM Learner

Description

Gradient boosting algorithm. Calls lightgbm::lightgbm() from lightgbm. The list of parameters can be found here and in the documentation of lightgbm::lgb.train().

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.lightgbm")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”

  • Required Packages: mlr3, mlr3extralearners, lightgbm

Parameters

Id Type Default Levels Range
objective character regression regression, regression_l1, huber, fair, poisson, quantile, mape, gamma, tweedie -
eval untyped - -
verbose integer 1 (-\infty, \infty)
record logical TRUE TRUE, FALSE -
eval_freq integer 1 [1, \infty)
callbacks untyped - -
reset_data logical FALSE TRUE, FALSE -
boosting character gbdt gbdt, rf, dart, goss -
linear_tree logical FALSE TRUE, FALSE -
learning_rate numeric 0.1 [0, \infty)
num_leaves integer 31 [1, 131072]
tree_learner character serial serial, feature, data, voting -
num_threads integer 0 [0, \infty)
device_type character cpu cpu, gpu -
seed integer - (-\infty, \infty)
deterministic logical FALSE TRUE, FALSE -
data_sample_strategy character bagging bagging, goss -
force_col_wise logical FALSE TRUE, FALSE -
force_row_wise logical FALSE TRUE, FALSE -
histogram_pool_size integer -1 (-\infty, \infty)
max_depth integer -1 (-\infty, \infty)
min_data_in_leaf integer 20 [0, \infty)
min_sum_hessian_in_leaf numeric 0.001 [0, \infty)
bagging_fraction numeric 1 [0, 1]
bagging_freq integer 0 [0, \infty)
bagging_seed integer 3 (-\infty, \infty)
bagging_by_query logical FALSE TRUE, FALSE -
feature_fraction numeric 1 [0, 1]
feature_fraction_bynode numeric 1 [0, 1]
feature_fraction_seed integer 2 (-\infty, \infty)
extra_trees logical FALSE TRUE, FALSE -
extra_seed integer 6 (-\infty, \infty)
max_delta_step numeric 0 (-\infty, \infty)
lambda_l1 numeric 0 [0, \infty)
lambda_l2 numeric 0 [0, \infty)
linear_lambda numeric 0 [0, \infty)
min_gain_to_split numeric 0 [0, \infty)
drop_rate numeric 0.1 [0, 1]
max_drop integer 50 (-\infty, \infty)
skip_drop numeric 0.5 [0, 1]
xgboost_dart_mode logical FALSE TRUE, FALSE -
uniform_drop logical FALSE TRUE, FALSE -
drop_seed integer 4 (-\infty, \infty)
top_rate numeric 0.2 [0, 1]
other_rate numeric 0.1 [0, 1]
min_data_per_group integer 100 [1, \infty)
max_cat_threshold integer 32 [1, \infty)
cat_l2 numeric 10 [0, \infty)
cat_smooth numeric 10 [0, \infty)
max_cat_to_onehot integer 4 [1, \infty)
top_k integer 20 [1, \infty)
monotone_constraints untyped NULL -
monotone_constraints_method character basic basic, intermediate, advanced -
monotone_penalty numeric 0 [0, \infty)
feature_contri untyped NULL -
forcedsplits_filename untyped "" -
refit_decay_rate numeric 0.9 [0, 1]
cegb_tradeoff numeric 1 [0, \infty)
cegb_penalty_split numeric 0 [0, \infty)
cegb_penalty_feature_lazy untyped - -
cegb_penalty_feature_coupled untyped - -
path_smooth numeric 0 [0, \infty)
interaction_constraints untyped - -
use_quantized_grad logical TRUE TRUE, FALSE -
num_grad_quant_bins integer 4 (-\infty, \infty)
quant_train_renew_leaf logical FALSE TRUE, FALSE -
stochastic_rounding logical TRUE TRUE, FALSE -
serializable logical TRUE TRUE, FALSE -
max_bin integer 255 [2, \infty)
max_bin_by_feature untyped NULL -
min_data_in_bin integer 3 [1, \infty)
bin_construct_sample_cnt integer 200000 [1, \infty)
data_random_seed integer 1 (-\infty, \infty)
is_enable_sparse logical TRUE TRUE, FALSE -
enable_bundle logical TRUE TRUE, FALSE -
use_missing logical TRUE TRUE, FALSE -
zero_as_missing logical FALSE TRUE, FALSE -
feature_pre_filter logical TRUE TRUE, FALSE -
pre_partition logical FALSE TRUE, FALSE -
two_round logical FALSE TRUE, FALSE -
forcedbins_filename untyped "" -
boost_from_average logical TRUE TRUE, FALSE -
reg_sqrt logical FALSE TRUE, FALSE -
alpha numeric 0.9 [0, \infty)
fair_c numeric 1 [0, \infty)
poisson_max_delta_step numeric 0.7 [0, \infty)
tweedie_variance_power numeric 1.5 [1, 2]
metric_freq integer 1 [1, \infty)
num_machines integer 1 [1, \infty)
local_listen_port integer 12400 [1, \infty)
time_out integer 120 [1, \infty)
machines untyped "" -
gpu_platform_id integer -1 (-\infty, \infty)
gpu_device_id integer -1 (-\infty, \infty)
gpu_use_dp logical FALSE TRUE, FALSE -
num_gpu integer 1 [1, \infty)
start_iteration_predict integer 0 (-\infty, \infty)
num_iteration_predict integer -1 (-\infty, \infty)
pred_early_stop logical FALSE TRUE, FALSE -
pred_early_stop_freq integer 10 (-\infty, \infty)
pred_early_stop_margin numeric 10 (-\infty, \infty)
num_iterations integer 100 [1, \infty)
early_stopping_rounds integer - [1, \infty)
early_stopping_min_delta numeric - [0, \infty)
first_metric_only logical FALSE TRUE, FALSE -

Initial parameter values

  • num_threads:

    • Actual default: 0L

    • Initital value: 1L

    • Reason for change: Prevents accidental conflicts with future.

  • verbose:

    • Actual default: 1L

    • Initial value: -1L

    • Reason for change: Prevents accidental conflicts with mlr messaging system.

Early Stopping and Validation

Early stopping can be used to find the optimal number of boosting rounds. Set early_stopping_rounds to an integer value to monitor the performance of the model on the validation set while training. For information on how to configure the validation set, see the Validation section of mlr3::Learner. The internal validation measure can be set the eval parameter which should be a list of mlr3::Measures, functions, or strings for the internal lightgbm measures. If first_metric_only = FALSE (default), the learner stops when any metric fails to improve.

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrLightGBM

Active bindings

internal_valid_scores

The last observation of the validation scores for all metrics. Extracted from model$evaluation_log

internal_tuned_values

Returns the early stopped iterations if early_stopping_rounds was set during training.

validate

How to construct the internal validation data. This parameter can be either NULL, a ratio, "test", or "predefined".

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrLightGBM$new()

Method importance()

The importance scores are extracted from lbg.importance.

Usage
LearnerRegrLightGBM$importance()
Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrLightGBM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

kapsner

References

Ke, Guolin, Meng, Qi, Finley, Thomas, Wang, Taifeng, Chen, Wei, Ma, Weidong, Ye, Qiwei, Liu, Tie-Yan (2017). “Lightgbm: A highly efficient gradient boosting decision tree.” Advances in neural information processing systems, 30.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("regr.lightgbm")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Nov. 11, 2024, 11:11 a.m.