mlr_learners_regr.linear_regression: Regression Linear Regression Learner From Weka

mlr_learners_regr.linear_regressionR Documentation

Regression Linear Regression Learner From Weka

Description

Linear Regression learner that uses the Akaike criterion for model selection and is able to deal with weighted instances. Calls RWeka::LinearRegression() RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • additional_stats:

    • original id: additional-stats

  • use_qr:

    • original id: use-qr

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.linear_regression")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
S character 0 0, 1, 2 -
C logical FALSE TRUE, FALSE -
R numeric 1e-08 (-\infty, \infty)
minimal logical FALSE TRUE, FALSE -
additional_stats logical FALSE TRUE, FALSE -
use_qr logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1, \infty)
batch_size integer 100 [1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrLinearRegression

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrLinearRegression$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrLinearRegression$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

See Also

Examples


# Define the Learner
learner = mlr3::lrn("regr.linear_regression")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Dec. 21, 2024, 2:21 p.m.