mlr_learners_regr.mars: Regression Mars Learner

mlr_learners_regr.marsR Documentation

Regression Mars Learner

Description

Multivariate Adaptive Regression Splines. Calls mda::mars() from mda.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.mars")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”

  • Required Packages: mlr3, mlr3extralearners, mda

Parameters

Id Type Default Levels Range
degree integer 1 [1, \infty)
nk integer - [1, \infty)
penalty numeric 2 [0, \infty)
thresh numeric 0.001 [0, \infty)
prune logical TRUE TRUE, FALSE -
trace.mars logical FALSE TRUE, FALSE -
forward.step logical FALSE TRUE, FALSE -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrMars

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrMars$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrMars$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

sumny

References

Friedman, H J (1991). “Multivariate adaptive regression splines.” The annals of statistics, 19(1), 1–67.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("regr.mars")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Nov. 11, 2024, 11:11 a.m.