mlr_learners_regr.priority_lasso: Regression Priority Lasso Learner

mlr_learners_regr.priority_lassoR Documentation

Regression Priority Lasso Learner

Description

Patient outcome prediction based on multi-omics data taking practitioners’ preferences into account. Calls prioritylasso::prioritylasso() from prioritylasso.

Initial parameter values

  • family is set to "gaussian" and cannot be changed

  • type.measure set to "mse" (cross-validation measure)

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.priority_lasso")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, prioritylasso

Parameters

Id Type Default Levels Range
blocks untyped - -
max.coef untyped NULL -
block1.penalization logical TRUE TRUE, FALSE -
lambda.type character lambda.min lambda.min, lambda.1se -
standardize logical TRUE TRUE, FALSE -
nfolds integer 5 [1, \infty)
foldid untyped NULL -
cvoffset logical FALSE TRUE, FALSE -
cvoffsetnfolds integer 10 [1, \infty)
handle.missingtestdata character - none, omit.prediction, set.zero, impute.block -
include.allintercepts logical FALSE TRUE, FALSE -
use.blocks untyped "all" -
alignment character lambda lambda, fraction -
alpha numeric 1 [0, 1]
big numeric 9.9e+35 (-\infty, \infty)
devmax numeric 0.999 [0, 1]
dfmax integer - [0, \infty)
eps numeric 1e-06 [0, 1]
epsnr numeric 1e-08 [0, 1]
exclude untyped - -
exmx numeric 250 (-\infty, \infty)
fdev numeric 1e-05 [0, 1]
gamma untyped - -
grouped logical TRUE TRUE, FALSE -
intercept logical TRUE TRUE, FALSE -
keep logical FALSE TRUE, FALSE -
lambda untyped - -
lambda.min.ratio numeric - [0, 1]
lower.limits untyped -Inf -
maxit integer 100000 [1, \infty)
mnlam integer 5 [1, \infty)
mxit integer 100 [1, \infty)
mxitnr integer 25 [1, \infty)
nlambda integer 100 [1, \infty)
offset untyped NULL -
parallel logical FALSE TRUE, FALSE -
penalty.factor untyped - -
pmax integer - [0, \infty)
pmin numeric 1e-09 [0, 1]
prec numeric 1e-10 (-\infty, \infty)
standardize.response logical FALSE TRUE, FALSE -
thresh numeric 1e-07 [0, \infty)
trace.it integer 0 [0, 1]
type.gaussian character - covariance, naive -
type.logistic character Newton Newton, modified.Newton -
type.multinomial character ungrouped ungrouped, grouped -
upper.limits untyped Inf -
scale.y logical FALSE TRUE, FALSE -
return.x logical TRUE TRUE, FALSE -
predict.gamma numeric gamma.1se (-\infty, \infty)
relax logical FALSE TRUE, FALSE -
s numeric lambda.1se [0, 1]

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrPriorityLasso

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrPriorityLasso$new()

Method selected_features()

Selected features when coef is positive

Usage
LearnerRegrPriorityLasso$selected_features()
Returns

character().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrPriorityLasso$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

HarutyunyanLiana

References

Simon K, Vindi J, Roman H, Tobias H, Anne-Laure B (2018). “Priority-Lasso: a simple hierarchical approach to the prediction of clinical outcome using multi-omics data.” BMC Bioinformatics, 19. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1186/s12859-018-2344-6")}.

See Also

Examples


# Define the Learner and set parameter values
learner = lrn("regr.priority_lasso",
  blocks = list(bp1 = 1:4, bp2 = 5:9, bp3 = 10:28, bp4 = 29:1028))
print(learner)

# Define a Task
task = mlr3::as_task_regr(prioritylasso::pl_data, target = "pl_out")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

# print the model
print(learner$model)

 # Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Jan. 4, 2025, 5:02 p.m.