mlr_learners_regr.qgam: Regression Quantile Generalized Additive Model Learner

mlr_learners_regr.qgamR Documentation

Regression Quantile Generalized Additive Model Learner

Description

Quantile Regression with generalized additive models. Calls qgam::qgam() from package qgam.

Form

For the form parameter, a gam formula specific to the Task is required (see example and ?mgcv::formula.gam). If no formula is provided, a fallback formula using all features in the task is used that will make the Learner behave like Linear Quantile Regression. The features specified in the formula need to be the same as columns with col_roles "feature" in the task.

Quantile

The quantile for the Learner, i.e. qu parameter from qgam::qgam(), is set using the value specified in learner$quantiles.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.qgam")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”, “se”, “quantiles”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”

  • Required Packages: mlr3, qgam

Parameters

Id Type Default Levels Range
form untyped - -
lsig numeric - (-\infty, \infty)
err numeric - [0, 1]
cluster untyped NULL -
multicore logical - TRUE, FALSE -
ncores numeric - (-\infty, \infty)
paropts untyped list() -
link untyped "identity" -
argGam untyped - -
block.size integer 1000 (-\infty, \infty)
unconditional logical FALSE TRUE, FALSE -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrQGam

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrQGam$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrQGam$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

lona-k

References

Fasiolo, Matteo, Wood, N. S, Zaffran, Margaux, Nedellec, Raphael, Goude, Yannig (2017). “Fast Calibrated Additive Quantile Regression.” Journal of the American Statistical Association, 116, 1402–1412. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/01621459.2020.1725521")}.

See Also

Examples


# simple example


mlr-org/mlr3extralearners documentation built on Jan. 31, 2025, 8:50 a.m.