mlr_learners_regr.random_forest_weka: Regression Random Forest Learner from Weka

mlr_learners_regr.random_forest_wekaR Documentation

Regression Random Forest Learner from Weka

Description

Class for constructing a forest of random trees. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • store_out_of_bag_predictions:

    • original id: store-out-of-bag-predictions

  • output_out_of_bag_complexity_statistics:

    • original id: output-out-of-bag-complexity-statistics

  • num_slots:

    • original id: num-slots

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

  • attribute-importance removed:

    • Compute and output attribute importance (mean impurity decrease method)

  • Reason for change: The parameter is removed because it's unclear how to actually use it.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.random_forest_weka")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
P numeric 100 [0, 100]
O logical FALSE TRUE, FALSE -
store_out_of_bag_predictions logical FALSE TRUE, FALSE -
output_out_of_bag_complexity_statistics logical FALSE TRUE, FALSE -
print logical FALSE TRUE, FALSE -
I integer 100 [1, \infty)
num_slots integer 1 (-\infty, \infty)
K integer 0 (-\infty, \infty)
M integer 1 [1, \infty)
V numeric 0.001 (-\infty, \infty)
S integer 1 (-\infty, \infty)
depth integer 0 [0, \infty)
N integer 0 (-\infty, \infty)
U logical FALSE TRUE, FALSE -
B logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1, \infty)
batch_size integer 100 [1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrRandomForestWeka

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrRandomForestWeka$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrRandomForestWeka$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1023/A:1010933404324")}.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("regr.random_forest_weka")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Dec. 21, 2024, 2:21 p.m.