mlr_learners_regr.rpf | R Documentation |
Random Planted Forest: A directly interpretable tree ensemble.
Calls randomPlantedForest::rpf()
from 'randomPlantedForest'.
This Learner can be instantiated via lrn():
lrn("regr.rpf")
Task type: “regr”
Predict Types: “response”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, randomPlantedForest
Id | Type | Default | Levels | Range |
max_interaction | integer | 1 | [0, \infty) |
|
max_interaction_ratio | numeric | - | [0, 1] |
|
max_interaction_limit | integer | - | [1, \infty) |
|
ntrees | integer | 50 | [1, \infty) |
|
splits | integer | 30 | [1, \infty) |
|
split_try | integer | 10 | [1, \infty) |
|
t_try | numeric | 0.4 | [0, 1] |
|
deterministic | logical | FALSE | TRUE, FALSE | - |
nthreads | integer | 1 | [1, \infty) |
|
cv | logical | FALSE | TRUE, FALSE | - |
purify | logical | FALSE | TRUE, FALSE | - |
max_interaction
:
This hyperparameter can alternatively be set via max_interaction_ratio
as
max_interaction = max(ceiling(max_interaction_ratio * n_features), 1)
.
The parameter max_interaction_limit
can optionally be set as an upper bound, such that
max_interaction_ratio * min(n_features, max_interaction_limit)
is used instead.
This is analogous to mtry.ratio
in classif.ranger
, with
max_interaction_limit
as an additional constraint.
The parameter max_interaction_limit
is initialized to Inf
.
Package 'randomPlantedForest' is not on CRAN and has to be installed from GitHub via
remotes::install_github("PlantedML/randomPlantedForest")
.
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrRandomPlantedForest
new()
Creates a new instance of this R6 class.
LearnerRegrRandomPlantedForest$new()
clone()
The objects of this class are cloneable with this method.
LearnerRegrRandomPlantedForest$clone(deep = FALSE)
deep
Whether to make a deep clone.
jemus42
Hiabu, Munir, Mammen, Enno, Meyer, T. J (2023). “Random Planted Forest: a directly interpretable tree ensemble.” arXiv preprint arXiv:2012.14563. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.48550/ARXIV.2012.14563")}.
Dictionary of Learners: mlr3::mlr_learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
# Define the Learner
learner = mlr3::lrn("regr.rpf")
print(learner)
# Define a Task
task = mlr3::tsk("mtcars")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.