mlr_learners_regr.rsm: Regression Response Surface Model Learner

mlr_learners_regr.rsmR Documentation

Regression Response Surface Model Learner

Description

Fit a linear model with a response-surface component. Calls rsm::rsm() from rsm.

Custom mlr3 parameters

  • modelfun: This parameter controls how the formula for rsm::rsm() is created. Possible values are:

    • "FO" - first order

    • "TWI" - wo-way interactions, this is with 1st oder terms

    • "SO" - full second order

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.rsm")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, rsm

Parameters

Id Type Default Levels
modelfun character - FO, TWI, SO

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrRSM

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrRSM$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrRSM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

sebffischer

References

Lenth, V R (2010). “Response-surface methods in R, using rsm.” Journal of Statistical Software, 32, 1–17.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("regr.rsm")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Jan. 4, 2025, 5:02 p.m.