mlr_learners_regr.smo_reg: Regression Support Vector Machine Learner

mlr_learners_regr.smo_regR Documentation

Regression Support Vector Machine Learner

Description

Support Vector Machine for regression. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • T_improved:

    • original id: T

  • V_improved:

    • original id: V

  • P_improved:

    • original id: P

  • L_improved:

    • original id: L (duplicated L for when I is set to RegSMOImproved)

  • W_improved:

    • original id: W

  • C_poly:

    • original id: C

  • E_poly:

    • original id: E

  • L_poly:

    • original id: L (duplicated L for when K is set to PolyKernel)

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.smo_reg")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
C numeric 1 (-\infty, \infty)
N character 0 0, 1, 2 -
I character RegSMOImproved RegSMO, RegSMOImproved -
K character PolyKernel NormalizedPolyKernel, PolyKernel, Puk, RBFKernel, StringKernel -
T_improved numeric 0.001 (-\infty, \infty)
V_improved logical TRUE TRUE, FALSE -
P_improved numeric 1e-12 (-\infty, \infty)
L_improved numeric 0.001 (-\infty, \infty)
W_improved integer 1 (-\infty, \infty)
C_poly integer 250007 (-\infty, \infty)
E_poly numeric 1 (-\infty, \infty)
L_poly logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1, \infty)
batch_size integer 100 [1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrSMOreg

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrSMOreg$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrSMOreg$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

References

Shevade S, Keerthi S, Bhattacharyya C, Murthy K (1999). “Improvements to the SMO Algorithm for SVM Regression.” In IEEE Transactions on Neural Networks.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("regr.smo_reg")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Dec. 21, 2024, 2:21 p.m.