mlr_learners_surv.aorsf | R Documentation |
Accelerated oblique random survival forest.
Calls aorsf::orsf()
from aorsf.
Note that although the learner has the property "missing"
and it can in
principle deal with missing values, the behaviour has to be configured using
the parameter na_action
.
n_thread
: This parameter is initialized to 1 (default is 0) to avoid conflicts with the mlr3 parallelization.
mtry
:
This hyperparameter can alternatively be set via the added hyperparameter mtry_ratio
as mtry = max(ceiling(mtry_ratio * n_features), 1)
.
Note that mtry
and mtry_ratio
are mutually exclusive.
This learner returns three prediction types:
distr
: a survival matrix in two dimensions, where observations are
represented in rows and (unique event) time points in columns.
Calculated using the internal predict.ObliqueForest()
function.
response
: the restricted mean survival time of each test observation,
derived from the survival matrix prediction (distr
).
crank
: the expected mortality using mlr3proba::.surv_return()
.
This Learner can be instantiated via lrn():
lrn("surv.aorsf")
Task type: “surv”
Predict Types: “crank”, “distr”, “response”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3proba, mlr3extralearners, aorsf, pracma
Id | Type | Default | Levels | Range |
n_tree | integer | 500 | [1, \infty) |
|
n_split | integer | 5 | [1, \infty) |
|
n_retry | integer | 3 | [0, \infty) |
|
n_thread | integer | 0 | [0, \infty) |
|
pred_aggregate | logical | TRUE | TRUE, FALSE | - |
pred_simplify | logical | FALSE | TRUE, FALSE | - |
oobag | logical | FALSE | TRUE, FALSE | - |
mtry | integer | NULL | [1, \infty) |
|
mtry_ratio | numeric | - | [0, 1] |
|
sample_with_replacement | logical | TRUE | TRUE, FALSE | - |
sample_fraction | numeric | 0.632 | [0, 1] |
|
control_type | character | fast | fast, cph, net | - |
split_rule | character | logrank | logrank, cstat | - |
control_fast_do_scale | logical | FALSE | TRUE, FALSE | - |
control_fast_ties | character | efron | efron, breslow | - |
control_cph_ties | character | efron | efron, breslow | - |
control_cph_eps | numeric | 1e-09 | [0, \infty) |
|
control_cph_iter_max | integer | 20 | [1, \infty) |
|
control_net_alpha | numeric | 0.5 | (-\infty, \infty) |
|
control_net_df_target | integer | NULL | [1, \infty) |
|
leaf_min_events | integer | 1 | [1, \infty) |
|
leaf_min_obs | integer | 5 | [1, \infty) |
|
split_min_events | integer | 5 | [1, \infty) |
|
split_min_obs | integer | 10 | [1, \infty) |
|
split_min_stat | numeric | NULL | [0, \infty) |
|
oobag_pred_type | character | risk | none, surv, risk, chf, mort | - |
importance | character | anova | none, anova, negate, permute | - |
importance_max_pvalue | numeric | 0.01 | [1e-04, 0.9999] |
|
tree_seeds | integer | NULL | [1, \infty) |
|
oobag_pred_horizon | numeric | NULL | [0, \infty) |
|
oobag_eval_every | integer | NULL | [1, \infty) |
|
oobag_fun | untyped | NULL | - | |
attach_data | logical | TRUE | TRUE, FALSE | - |
verbose_progress | logical | FALSE | TRUE, FALSE | - |
na_action | character | fail | fail, omit, impute_meanmode | - |
mlr3::Learner
-> mlr3proba::LearnerSurv
-> LearnerSurvAorsf
new()
Creates a new instance of this R6 class.
LearnerSurvAorsf$new()
oob_error()
OOB concordance error extracted from the model slot
eval_oobag$stat_values
LearnerSurvAorsf$oob_error()
numeric()
.
importance()
The importance scores are extracted from the model.
LearnerSurvAorsf$importance()
Named numeric()
.
clone()
The objects of this class are cloneable with this method.
LearnerSurvAorsf$clone(deep = FALSE)
deep
Whether to make a deep clone.
bcjaeger
Jaeger BC, Long DL, Long DM, Sims M, Szychowski JM, Min Y, Mcclure LA, Howard G, Simon N (2019). “Oblique random survival forests.” The Annals of Applied Statistics, 13(3). \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/19-aoas1261")}.
Jaeger BC, Welden S, Lenoir K, Speiser JL, Segar MW, Pandey A, Pajewski NM (2023). “Accelerated and interpretable oblique random survival forests.” Journal of Computational and Graphical Statistics, 1–16. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10618600.2023.2231048")}.
Dictionary of Learners: mlr3::mlr_learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
# Define the Learner
learner = mlr3::lrn("surv.aorsf")
print(learner)
# Define a Task
task = mlr3::tsk("grace")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
print(learner$importance())
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.