mlr_learners_surv.aorsf: Accelerated Oblique Random Survival Forest Learner

mlr_learners_surv.aorsfR Documentation

Accelerated Oblique Random Survival Forest Learner

Description

Accelerated oblique random survival forest. Calls aorsf::orsf() from aorsf. Note that although the learner has the property "missing" and it can in principle deal with missing values, the behaviour has to be configured using the parameter na_action.

Initial parameter values

  • n_thread: This parameter is initialized to 1 (default is 0) to avoid conflicts with the mlr3 parallelization.

  • mtry:

    • This hyperparameter can alternatively be set via the added hyperparameter mtry_ratio as mtry = max(ceiling(mtry_ratio * n_features), 1). Note that mtry and mtry_ratio are mutually exclusive.

Prediction types

This learner returns three prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and (unique event) time points in columns. Calculated using the internal predict.ObliqueForest() function.

  2. response: the restricted mean survival time of each test observation, derived from the survival matrix prediction (distr).

  3. crank: the expected mortality using mlr3proba::.surv_return().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.aorsf")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”, “response”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, aorsf, pracma

Parameters

Id Type Default Levels Range
n_tree integer 500 [1, \infty)
n_split integer 5 [1, \infty)
n_retry integer 3 [0, \infty)
n_thread integer 0 [0, \infty)
pred_aggregate logical TRUE TRUE, FALSE -
pred_simplify logical FALSE TRUE, FALSE -
oobag logical FALSE TRUE, FALSE -
mtry integer NULL [1, \infty)
mtry_ratio numeric - [0, 1]
sample_with_replacement logical TRUE TRUE, FALSE -
sample_fraction numeric 0.632 [0, 1]
control_type character fast fast, cph, net -
split_rule character logrank logrank, cstat -
control_fast_do_scale logical FALSE TRUE, FALSE -
control_fast_ties character efron efron, breslow -
control_cph_ties character efron efron, breslow -
control_cph_eps numeric 1e-09 [0, \infty)
control_cph_iter_max integer 20 [1, \infty)
control_net_alpha numeric 0.5 (-\infty, \infty)
control_net_df_target integer NULL [1, \infty)
leaf_min_events integer 1 [1, \infty)
leaf_min_obs integer 5 [1, \infty)
split_min_events integer 5 [1, \infty)
split_min_obs integer 10 [1, \infty)
split_min_stat numeric NULL [0, \infty)
oobag_pred_type character risk none, surv, risk, chf, mort -
importance character anova none, anova, negate, permute -
importance_max_pvalue numeric 0.01 [1e-04, 0.9999]
tree_seeds integer NULL [1, \infty)
oobag_pred_horizon numeric NULL [0, \infty)
oobag_eval_every integer NULL [1, \infty)
oobag_fun untyped NULL -
attach_data logical TRUE TRUE, FALSE -
verbose_progress logical FALSE TRUE, FALSE -
na_action character fail fail, omit, impute_meanmode -

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvAorsf

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvAorsf$new()

Method oob_error()

OOB concordance error extracted from the model slot eval_oobag$stat_values

Usage
LearnerSurvAorsf$oob_error()
Returns

numeric().


Method importance()

The importance scores are extracted from the model.

Usage
LearnerSurvAorsf$importance()
Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvAorsf$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

bcjaeger

References

Jaeger BC, Long DL, Long DM, Sims M, Szychowski JM, Min Y, Mcclure LA, Howard G, Simon N (2019). “Oblique random survival forests.” The Annals of Applied Statistics, 13(3). \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/19-aoas1261")}.

Jaeger BC, Welden S, Lenoir K, Speiser JL, Segar MW, Pandey A, Pajewski NM (2023). “Accelerated and interpretable oblique random survival forests.” Journal of Computational and Graphical Statistics, 1–16. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10618600.2023.2231048")}.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("surv.aorsf")
print(learner)

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Jan. 4, 2025, 5:02 p.m.