mlr_learners_surv.coxtime: Survival Cox-Time Learner

mlr_learners_surv.coxtimeR Documentation

Survival Cox-Time Learner

Description

Cox-Time survival model. Calls survivalmodels::coxtime() from package 'survivalmodels'.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using the internal survivalmodels::predict.pycox() function.

  2. crank: the expected mortality using survivalmodels::surv_to_risk().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.coxtime")

Meta Information

Parameters

Id Type Default Levels Range
frac numeric 0 [0, 1]
standardize_time logical FALSE TRUE, FALSE -
log_duration logical FALSE TRUE, FALSE -
with_mean logical TRUE TRUE, FALSE -
with_std logical TRUE TRUE, FALSE -
num_nodes untyped c(32L, 32L) -
batch_norm logical TRUE TRUE, FALSE -
dropout numeric - [0, 1]
activation character relu celu, elu, gelu, glu, hardshrink, hardsigmoid, hardswish, hardtanh, relu6, leakyrelu, ... -
device untyped - -
shrink numeric 0 [0, \infty)
optimizer character adam adadelta, adagrad, adam, adamax, adamw, asgd, rmsprop, rprop, sgd, sparse_adam -
rho numeric 0.9 (-\infty, \infty)
eps numeric 1e-08 (-\infty, \infty)
lr numeric 1 (-\infty, \infty)
weight_decay numeric 0 (-\infty, \infty)
learning_rate numeric 0.01 (-\infty, \infty)
lr_decay numeric 0 (-\infty, \infty)
betas untyped c(0.9, 0.999) -
amsgrad logical FALSE TRUE, FALSE -
lambd numeric 1e-04 [0, \infty)
alpha numeric 0.75 [0, \infty)
t0 numeric 1e+06 (-\infty, \infty)
momentum numeric 0 (-\infty, \infty)
centered logical TRUE TRUE, FALSE -
etas untyped c(0.5, 1.2) -
step_sizes untyped c(1e-06, 50) -
dampening numeric 0 (-\infty, \infty)
nesterov logical FALSE TRUE, FALSE -
batch_size integer 256 (-\infty, \infty)
epochs integer 1 [1, \infty)
verbose logical TRUE TRUE, FALSE -
num_workers integer 0 (-\infty, \infty)
shuffle logical TRUE TRUE, FALSE -
best_weights logical FALSE TRUE, FALSE -
early_stopping logical FALSE TRUE, FALSE -
min_delta numeric 0 (-\infty, \infty)
patience integer 10 (-\infty, \infty)

Installation

Package 'survivalmodels' is not on CRAN and has to be install from GitHub via remotes::install_github("RaphaelS1/survivalmodels").

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvCoxtime

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvCoxtime$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvCoxtime$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Kvamme, Håvard, Borgan Ø, Scheel I (2019). “Time-to-event prediction with neural networks and Cox regression.” arXiv preprint arXiv:1907.00825.

See Also

Examples

lrn("surv.coxtime")

mlr-org/mlr3extralearners documentation built on Dec. 21, 2024, 2:21 p.m.