mlr_learners_surv.coxtime | R Documentation |
Cox-Time survival model.
Calls survivalmodels::coxtime()
from package 'survivalmodels'.
This learner returns two prediction types:
distr
: a survival matrix in two dimensions, where observations are
represented in rows and time points in columns.
Calculated using the internal survivalmodels::predict.pycox()
function.
crank
: the expected mortality using survivalmodels::surv_to_risk()
.
This Learner can be instantiated via lrn():
lrn("surv.coxtime")
Task type: “surv”
Predict Types: “crank”, “distr”
Feature Types: “integer”, “numeric”
Required Packages: mlr3, mlr3proba, mlr3extralearners, survivalmodels, distr6, reticulate
Id | Type | Default | Levels | Range |
frac | numeric | 0 | [0, 1] |
|
standardize_time | logical | FALSE | TRUE, FALSE | - |
log_duration | logical | FALSE | TRUE, FALSE | - |
with_mean | logical | TRUE | TRUE, FALSE | - |
with_std | logical | TRUE | TRUE, FALSE | - |
num_nodes | untyped | c(32L, 32L) | - | |
batch_norm | logical | TRUE | TRUE, FALSE | - |
dropout | numeric | - | [0, 1] |
|
activation | character | relu | celu, elu, gelu, glu, hardshrink, hardsigmoid, hardswish, hardtanh, relu6, leakyrelu, ... | - |
device | untyped | - | - | |
shrink | numeric | 0 | [0, \infty) |
|
optimizer | character | adam | adadelta, adagrad, adam, adamax, adamw, asgd, rmsprop, rprop, sgd, sparse_adam | - |
rho | numeric | 0.9 | (-\infty, \infty) |
|
eps | numeric | 1e-08 | (-\infty, \infty) |
|
lr | numeric | 1 | (-\infty, \infty) |
|
weight_decay | numeric | 0 | (-\infty, \infty) |
|
learning_rate | numeric | 0.01 | (-\infty, \infty) |
|
lr_decay | numeric | 0 | (-\infty, \infty) |
|
betas | untyped | c(0.9, 0.999) | - | |
amsgrad | logical | FALSE | TRUE, FALSE | - |
lambd | numeric | 1e-04 | [0, \infty) |
|
alpha | numeric | 0.75 | [0, \infty) |
|
t0 | numeric | 1e+06 | (-\infty, \infty) |
|
momentum | numeric | 0 | (-\infty, \infty) |
|
centered | logical | TRUE | TRUE, FALSE | - |
etas | untyped | c(0.5, 1.2) | - | |
step_sizes | untyped | c(1e-06, 50) | - | |
dampening | numeric | 0 | (-\infty, \infty) |
|
nesterov | logical | FALSE | TRUE, FALSE | - |
batch_size | integer | 256 | (-\infty, \infty) |
|
epochs | integer | 1 | [1, \infty) |
|
verbose | logical | TRUE | TRUE, FALSE | - |
num_workers | integer | 0 | (-\infty, \infty) |
|
shuffle | logical | TRUE | TRUE, FALSE | - |
best_weights | logical | FALSE | TRUE, FALSE | - |
early_stopping | logical | FALSE | TRUE, FALSE | - |
min_delta | numeric | 0 | (-\infty, \infty) |
|
patience | integer | 10 | (-\infty, \infty) |
|
Package 'survivalmodels' is not on CRAN and has to be install from GitHub via
remotes::install_github("RaphaelS1/survivalmodels")
.
mlr3::Learner
-> mlr3proba::LearnerSurv
-> LearnerSurvCoxtime
new()
Creates a new instance of this R6 class.
LearnerSurvCoxtime$new()
clone()
The objects of this class are cloneable with this method.
LearnerSurvCoxtime$clone(deep = FALSE)
deep
Whether to make a deep clone.
RaphaelS1
Kvamme, Håvard, Borgan Ø, Scheel I (2019). “Time-to-event prediction with neural networks and Cox regression.” arXiv preprint arXiv:1907.00825.
Dictionary of Learners: mlr3::mlr_learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
lrn("surv.coxtime")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.