mlr_learners_surv.ctree: Survival Conditional Inference Tree Learner

mlr_learners_surv.ctreeR Documentation

Survival Conditional Inference Tree Learner

Description

Survival Partition Tree where a significance test is used to determine the univariate splits. Calls partykit::ctree() from partykit.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using the internal partykit::predict.party() function.

  2. crank: the expected mortality using mlr3proba::.surv_return().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.ctree")

Meta Information

Parameters

Id Type Default Levels Range
teststat character quadratic quadratic, maximum -
splitstat character quadratic quadratic, maximum -
splittest logical FALSE TRUE, FALSE -
testtype character Bonferroni Bonferroni, MonteCarlo, Univariate, Teststatistic -
nmax untyped - -
alpha numeric 0.05 [0, 1]
mincriterion numeric 0.95 [0, 1]
logmincriterion numeric - (-\infty, \infty)
minsplit integer 20 [1, \infty)
minbucket integer 7 [1, \infty)
minprob numeric 0.01 [0, \infty)
stump logical FALSE TRUE, FALSE -
lookahead logical FALSE TRUE, FALSE -
MIA logical FALSE TRUE, FALSE -
nresample integer 9999 [1, \infty)
tol numeric - [0, \infty)
maxsurrogate integer 0 [0, \infty)
numsurrogate logical FALSE TRUE, FALSE -
mtry integer Inf [0, \infty)
maxdepth integer Inf [0, \infty)
maxvar integer - [1, \infty)
multiway logical FALSE TRUE, FALSE -
splittry integer 2 [0, \infty)
intersplit logical FALSE TRUE, FALSE -
majority logical FALSE TRUE, FALSE -
caseweights logical FALSE TRUE, FALSE -
applyfun untyped - -
cores integer NULL (-\infty, \infty)
saveinfo logical TRUE TRUE, FALSE -
update logical FALSE TRUE, FALSE -
splitflavour character ctree ctree, exhaustive -
offset untyped - -
cluster untyped - -
scores untyped - -
doFit logical TRUE TRUE, FALSE -
maxpts integer 25000 (-\infty, \infty)
abseps numeric 0.001 [0, \infty)
releps numeric 0 [0, \infty)

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvCTree

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvCTree$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvCTree$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

adibender

References

Hothorn T, Zeileis A (2015). “partykit: A Modular Toolkit for Recursive Partytioning in R.” Journal of Machine Learning Research, 16(118), 3905-3909. http://jmlr.org/papers/v16/hothorn15a.html.

Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive Partitioning: A Conditional Inference Framework.” Journal of Computational and Graphical Statistics, 15(3), 651–674. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1198/106186006x133933")}, https://doi.org/10.1198/106186006x133933.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("surv.ctree")
print(learner)

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Dec. 21, 2024, 2:21 p.m.