mlr_learners_surv.dnnsurv: Survival DNNSurv Learner

mlr_learners_surv.dnnsurvR Documentation

Survival DNNSurv Learner

Description

Fits a neural network based on pseudo-conditional survival probabilities. Calls survivalmodels::dnnsurv() from package 'survivalmodels'.

Details

Custom nets can be used in this learner either using the survivalmodels::build_keras_net utility function or using keras. The number of output channels should be of length 1 and number of input channels is the number of features plus number of cuts.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using the internal survivalmodels::predict.dnnsurv() function.

  2. crank: the expected mortality using survivalmodels::surv_to_risk().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.dnnsurv")

Meta Information

Parameters

Id Type Default Levels Range
cuts integer 5 [1, \infty)
cutpoints untyped - -
custom_model untyped - -
optimizer character adam adadelta, adagrad, adamax, adam, nadam, rmsprop, sgd -
lr numeric 0.02 [0, \infty)
beta_1 numeric 0.9 [0, 1]
beta_2 numeric 0.999 [0, 1]
epsilon numeric - [0, \infty)
decay numeric 0 [0, \infty)
clipnorm numeric - (-\infty, \infty)
clipvalue numeric - (-\infty, \infty)
momentum numeric 0 [0, \infty)
nesterov logical FALSE TRUE, FALSE -
loss_weights untyped - -
weighted_metrics untyped - -
early_stopping logical FALSE TRUE, FALSE -
min_delta numeric 0 [0, \infty)
patience integer 0 [0, \infty)
verbose integer 0 [0, 2]
baseline numeric - (-\infty, \infty)
restore_best_weights logical FALSE TRUE, FALSE -
batch_size integer 32 [1, \infty)
epochs integer 10 [1, \infty)
validation_split numeric 0 [0, 1]
shuffle logical TRUE TRUE, FALSE -
sample_weight untyped - -
initial_epoch integer 0 [0, \infty)
steps_per_epoch integer - [1, \infty)
validation_steps integer - [1, \infty)
steps integer - [0, \infty)
callbacks untyped - -
rho numeric 0.95 (-\infty, \infty)
global_clipnorm numeric - (-\infty, \infty)
use_ema logical - TRUE, FALSE -
ema_momentum numeric 0.99 (-\infty, \infty)
ema_overwrite_frequency numeric - (-\infty, \infty)
jit_compile logical TRUE TRUE, FALSE -
initial_accumultator_value numeric 0.1 (-\infty, \infty)
amsgrad logical FALSE TRUE, FALSE -
lr_power numeric -0.5 (-\infty, \infty)
l1_regularization_strength numeric 0 [0, \infty)
l2_regularization_strength numeric 0 [0, \infty)
l2_shrinkage_regularization_strength numeric 0 [0, \infty)
beta numeric 0 (-\infty, \infty)
centered logical FALSE TRUE, FALSE -

Installation

Package 'survivalmodels' is not on CRAN and has to be install from GitHub via remotes::install_github("RaphaelS1/survivalmodels").

Initial parameter values

  • verbose is initialized to 0.

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvDNNSurv

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvDNNSurv$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvDNNSurv$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Zhao, Lili, Feng, Dai (2019). “Dnnsurv: Deep neural networks for survival analysis using pseudo values.” arXiv preprint arXiv:1908.02337.

See Also

Examples

lrn("surv.dnnsurv")

mlr-org/mlr3extralearners documentation built on Nov. 11, 2024, 11:11 a.m.