mlr_learners_surv.loghaz: Survival Logistic-Hazard Learner

mlr_learners_surv.loghazR Documentation

Survival Logistic-Hazard Learner

Description

Survival logistic hazard learner. Calls survivalmodels::loghaz() from package 'survivalmodels'.

Details

Custom nets can be used in this learner either using the survivalmodels::build_pytorch_net utility function or using torch via reticulate. The number of output channels depends on the number of discretised time-points, i.e. the parameters cuts or cutpoints.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using the internal survivalmodels::predict.pycox() function.

  2. crank: the expected mortality using survivalmodels::surv_to_risk().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.loghaz")

Meta Information

Parameters

Id Type Default Levels Range
frac numeric 0 [0, 1]
cuts integer 10 [1, \infty)
cutpoints untyped - -
scheme character equidistant equidistant, quantiles -
cut_min numeric 0 [0, \infty)
num_nodes untyped c(32L, 32L) -
batch_norm logical TRUE TRUE, FALSE -
dropout numeric - [0, 1]
activation character relu celu, elu, gelu, glu, hardshrink, hardsigmoid, hardswish, hardtanh, relu6, leakyrelu, ... -
custom_net untyped - -
device untyped - -
optimizer character adam adadelta, adagrad, adam, adamax, adamw, asgd, rmsprop, rprop, sgd, sparse_adam -
rho numeric 0.9 (-\infty, \infty)
eps numeric 1e-08 (-\infty, \infty)
lr numeric 1 (-\infty, \infty)
weight_decay numeric 0 (-\infty, \infty)
learning_rate numeric 0.01 (-\infty, \infty)
lr_decay numeric 0 (-\infty, \infty)
betas untyped c(0.9, 0.999) -
amsgrad logical FALSE TRUE, FALSE -
lambd numeric 1e-04 [0, \infty)
alpha numeric 0.75 [0, \infty)
t0 numeric 1e+06 (-\infty, \infty)
momentum numeric 0 (-\infty, \infty)
centered logical TRUE TRUE, FALSE -
etas untyped c(0.5, 1.2) -
step_sizes untyped c(1e-06, 50) -
dampening numeric 0 (-\infty, \infty)
nesterov logical FALSE TRUE, FALSE -
batch_size integer 256 (-\infty, \infty)
epochs integer 1 [1, \infty)
verbose logical TRUE TRUE, FALSE -
num_workers integer 0 (-\infty, \infty)
shuffle logical TRUE TRUE, FALSE -
best_weights logical FALSE TRUE, FALSE -
early_stopping logical FALSE TRUE, FALSE -
min_delta numeric 0 (-\infty, \infty)
patience integer 10 (-\infty, \infty)
interpolate logical FALSE TRUE, FALSE -
inter_scheme character const_hazard const_hazard, const_pdf -
sub integer 10 [1, \infty)

Installation

Package 'survivalmodels' is not on CRAN and has to be install from GitHub via remotes::install_github("RaphaelS1/survivalmodels").

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvLogisticHazard

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvLogisticHazard$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvLogisticHazard$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Gensheimer, F M, Narasimhan, BA (2018). “Simple discrete-time survival model for neural networks.” arXiv.

Kvamme, Håvard, Borgan Ø, Scheel I (2019). “Time-to-event prediction with neural networks and Cox regression.” arXiv preprint arXiv:1907.00825.

See Also

Examples

lrn("surv.loghaz")

mlr-org/mlr3extralearners documentation built on Nov. 11, 2024, 11:11 a.m.