mlr_learners_surv.ranger | R Documentation |
Random survival forest.
Calls ranger::ranger()
from package ranger.
This learner returns two prediction types:
distr
: a survival matrix in two dimensions, where observations are
represented in rows and (unique event) time points in columns.
Calculated using the internal ranger::predict.ranger()
function.
crank
: the expected mortality using mlr3proba::.surv_return()
.
mtry
: This hyperparameter can alternatively be set via our hyperparameter
mtry.ratio
as mtry = max(ceiling(mtry.ratio * n_features), 1)
.
Note that mtry
and mtry.ratio
are mutually exclusive.
num.threads
is initialized to 1 to avoid conflicts with parallelization via future.
This Learner can be instantiated via lrn():
lrn("surv.ranger")
Task type: “surv”
Predict Types: “crank”, “distr”
Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”
Required Packages: mlr3, mlr3proba, mlr3extralearners, ranger
Id | Type | Default | Levels | Range |
alpha | numeric | 0.5 | (-\infty, \infty) |
|
always.split.variables | untyped | - | - | |
holdout | logical | FALSE | TRUE, FALSE | - |
importance | character | - | none, impurity, impurity_corrected, permutation | - |
keep.inbag | logical | FALSE | TRUE, FALSE | - |
max.depth | integer | NULL | [0, \infty) |
|
min.node.size | integer | 5 | [1, \infty) |
|
minprop | numeric | 0.1 | (-\infty, \infty) |
|
mtry | integer | - | [1, \infty) |
|
mtry.ratio | numeric | - | [0, 1] |
|
num.random.splits | integer | 1 | [1, \infty) |
|
num.threads | integer | 1 | [1, \infty) |
|
num.trees | integer | 500 | [1, \infty) |
|
oob.error | logical | TRUE | TRUE, FALSE | - |
regularization.factor | untyped | 1 | - | |
regularization.usedepth | logical | FALSE | TRUE, FALSE | - |
replace | logical | TRUE | TRUE, FALSE | - |
respect.unordered.factors | character | ignore | ignore, order, partition | - |
sample.fraction | numeric | - | [0, 1] |
|
save.memory | logical | FALSE | TRUE, FALSE | - |
scale.permutation.importance | logical | FALSE | TRUE, FALSE | - |
seed | integer | NULL | (-\infty, \infty) |
|
split.select.weights | numeric | - | [0, 1] |
|
splitrule | character | logrank | logrank, extratrees, C, maxstat | - |
verbose | logical | TRUE | TRUE, FALSE | - |
write.forest | logical | TRUE | TRUE, FALSE | - |
min.bucket | integer | 3 | (-\infty, \infty) |
|
time.interest | integer | NULL | [1, \infty) |
|
node.stats | logical | FALSE | TRUE, FALSE | - |
mlr3::Learner
-> mlr3proba::LearnerSurv
-> LearnerSurvRanger
new()
Creates a new instance of this R6 class.
LearnerSurvRanger$new()
importance()
The importance scores are extracted from the model slot variable.importance
.
LearnerSurvRanger$importance()
Named numeric()
.
oob_error()
The out-of-bag error is extracted from the model slot prediction.error
.
LearnerSurvRanger$oob_error()
numeric(1)
.
clone()
The objects of this class are cloneable with this method.
LearnerSurvRanger$clone(deep = FALSE)
deep
Whether to make a deep clone.
be-marc
Wright, N. M, Ziegler, Andreas (2017). “ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R.” Journal of Statistical Software, 77(1), 1–17. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v077.i01")}.
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1023/A:1010933404324")}.
Dictionary of Learners: mlr3::mlr_learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
# Define the Learner
learner = mlr3::lrn("surv.ranger", importance = "permutation")
print(learner)
# Define a Task
task = mlr3::tsk("grace")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
print(learner$importance())
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.