mlr_learners_surv.rfsrc: Survival Random Forest SRC Learner

mlr_learners_surv.rfsrcR Documentation

Survival Random Forest SRC Learner

Description

Random survival forest. Calls randomForestSRC::rfsrc() from randomForestSRC.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and (unique event) time points in columns. Calculated using the internal randomForestSRC::predict.rfsrc() function.

  2. crank: the expected mortality using mlr3proba::.surv_return().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.rfsrc")

Meta Information

Parameters

Id Type Default Levels Range
ntree integer 500 [1, \infty)
mtry integer - [1, \infty)
mtry.ratio numeric - [0, 1]
nodesize integer 15 [1, \infty)
nodedepth integer - [1, \infty)
splitrule character logrank logrank, bs.gradient, logrankscore -
nsplit integer 10 [0, \infty)
importance character FALSE FALSE, TRUE, none, permute, random, anti -
block.size integer 10 [1, \infty)
bootstrap character by.root by.root, by.node, none, by.user -
samptype character swor swor, swr -
samp untyped - -
membership logical FALSE TRUE, FALSE -
sampsize untyped - -
sampsize.ratio numeric - [0, 1]
na.action character na.omit na.omit, na.impute -
nimpute integer 1 [1, \infty)
ntime integer 150 [0, \infty)
cause integer - [1, \infty)
proximity character FALSE FALSE, TRUE, inbag, oob, all -
distance character FALSE FALSE, TRUE, inbag, oob, all -
forest.wt character FALSE FALSE, TRUE, inbag, oob, all -
xvar.wt untyped - -
split.wt untyped - -
forest logical TRUE TRUE, FALSE -
var.used character FALSE FALSE, all.trees, by.tree -
split.depth character FALSE FALSE, all.trees, by.tree -
seed integer - (-\infty, -1]
do.trace logical FALSE TRUE, FALSE -
statistics logical FALSE TRUE, FALSE -
get.tree untyped - -
outcome character train train, test -
ptn.count integer 0 [0, \infty)
estimator character nelson nelson, kaplan -
cores integer 1 [1, \infty)
save.memory logical FALSE TRUE, FALSE -
perf.type character - none -
case.depth logical FALSE TRUE, FALSE -

Custom mlr3 parameters

  • estimator: Hidden parameter that controls the type of estimator used to derive the survival function during prediction. The default value is "chf" which uses a bootstrapped Nelson-Aalen estimator for the cumulative hazard function H(t), (Ishwaran, 2008) from which we calculate S(t) = \exp(-H(t)), whereas "surv" uses a bootstrapped Kaplan-Meier estimator to directly estimate S(t).

  • mtry: This hyperparameter can alternatively be set via the added hyperparameter mtry.ratio as mtry = max(ceiling(mtry.ratio * n_features), 1). Note that mtry and mtry.ratio are mutually exclusive.

  • sampsize: This hyperparameter can alternatively be set via the added hyperparameter sampsize.ratio as sampsize = max(ceiling(sampsize.ratio * n_obs), 1). Note that sampsize and sampsize.ratio are mutually exclusive.

  • cores: This value is set as the option rf.cores during training and is set to 1 by default.

Initial parameter values

  • ntime: Number of time points to coerce the observed event times for use in the estimated survival function during prediction. We changed the default value of 150 to 0 in order to be in line with other random survival forest learners and use all the unique event times from the train set.

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvRandomForestSRC

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvRandomForestSRC$new()

Method importance()

The importance scores are extracted from the model slot importance.

Usage
LearnerSurvRandomForestSRC$importance()
Returns

Named numeric().


Method selected_features()

Selected features are extracted from the model slot var.used.

Usage
LearnerSurvRandomForestSRC$selected_features()
Returns

character().


Method oob_error()

OOB error extracted from the model slot err.rate.

Usage
LearnerSurvRandomForestSRC$oob_error()
Returns

numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvRandomForestSRC$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS (2008). “Random survival forests.” The Annals of Applied Statistics, 2(3). \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/08-aoas169")}, https://doi.org/10.1214/08-aoas169.

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1023/A:1010933404324")}.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("surv.rfsrc", importance = "TRUE")
print(learner)

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Jan. 4, 2025, 5:02 p.m.