R/dot-permTestDiffAsso.R

Defines functions .diffConnectNetwork .diffConnectVariables .diffConnectPairs .permTestDiffAsso

Documented in .permTestDiffAsso

#' @title Permutation Tests for Determining Differential Associations
#'
#' @description The function implements procedures to test whether pairs of taxa
#'   are differentially associated, whether a taxon is differentially associated
#'   to all other taxa, or whether two networks are differentially associated
#'   between two groups as proposed  by \cite{Gill et al.(2010)}.
#'
#' @param countMat1,countMat2 matrices containing microbiome data (read counts)
#'   of group 1 and group 2 (rows represent samples and columns taxonomic units,
#'   respectively).
#' @param countsJoint joint count matrices before preprocessing
#' @param normCounts1,normCounts2 normalized count matrices.
#' @param assoMat1,assoMat2 association matrices corresponding to the two count
#'   matrices. The associations must have been estimated from the count matrices
#'   \code{countMat1} and \code{countMat2}.
#' @param paramsNetConstruct parameters used for network construction.
#' @param method character vector indicating the tests to be performed. Possible
#'   values are \code{"connect.pairs"} (differentially correlated taxa pairs),
#'   \code{"connect.variables"} (one taxon to all other) and
#'   \code{"connect.network"} (differentially connected networks). By default,
#'   all three tests are conducted.
#' @param fisherTrans logical indicating whether the correlation values should
#'   be Fisher-transformed.
#' @param pvalsMethod currently only \code{"pseudo"} is available, where 1 is
#'   added to the number of permutations and the permutation test statistics
#'   being more extreme than the observed one in order to avoid zero p-values.
#' @param adjust multiple testing adjustment for the tests for differentially
#'   correlated pairs of taxa; possible values are "lfdr" (default) for local
#'   false discovery rate correction (via \code{\link[fdrtool]{fdrtool}}) or one
#'   of the methods provided by \code{\link[stats]{p.adjust}}
#' @param adjust2 multiple testing adjustment for the tests if a taxa pair is
#'   differentially correlated to all other taxa; possible methods are those
#'   provided by \code{\link[stats]{p.adjust}} (a few hundred tests are
#'   necessary for the local fdr correction)
#' @param trueNullMethod character indicating the method used for estimating the
#'   proportion of true null hypotheses from a vector of p-values. Used for the
#'   adaptive Benjamini-Hochberg method for multiple testing adjustment (chosen
#'   by \code{adjust = "adaptBH"}).
#' @param alpha significance level
#' @param lfdrThresh defines a threshold for the local fdr if "lfdr" is chosen
#'   as method for multiple testing correction; defaults to 0.2, which means
#'   that correlations with a corresponding local fdr less than or equal to 0.2
#'   are identified as significant
#' @param nPerm number of permutations
#' @param matchDesign Numeric vector with two elements specifying an optional 
#'   matched-group (i.e. matched-pair) design, which is used for the permutation 
#'   tests in \code{\link{netCompare}} and \code{\link{diffnet}}. \code{c(1,1)} 
#'   corresponds to a matched-pair design. A 1:2 matching, for instance, is 
#'   defined by \code{c(1,2)}, which means that the first sample of group 1 is 
#'   matched to the first two samples of group 2 and so on. 
#'   The appropriate order of samples must be ensured. If 
#'   \code{NULL}, the group memberships are shuffled randomly while group sizes
#'   identical to the original data set are ensured.
#' @param callNetConstr call inherited from \code{netConstruct()}.
#' @param cores number of CPU cores (permutation tests are executed parallel)
#' @param verbose if \code{TRUE}, status messages and numbers of SparCC
#'   iterations are printed
#' @param logFile character string naming the log file within which the current
#'   iteration number is stored
#' @param seed an optional seed for reproducibility of the results
#' @param fileLoadAssoPerm  character giving the name (without extenstion) 
#'   or path of the file storing the "permuted" association/dissimilarity 
#'   matrices that have been exported by setting \code{storeAssoPerm} to 
#'   \code{TRUE}. Only used for permutation tests. Set to \code{NULL} if no 
#'   existing associations should be used.
#' @param fileLoadCountsPerm character giving the name (without extenstion) 
#'   or path of the file storing the "permuted" count matrices that have been 
#'   exported by setting \code{storeCountsPerm} to \code{TRUE}. 
#'   Only used for permutation tests, and if \code{fileLoadAssoPerm = NULL}. 
#'   Set to \code{NULL} if no existing count matrices should be used.
#' @param storeAssoPerm logical indicating whether the association (or
#'   dissimilarity) matrices for the permuted data should be stored in a file.
#'   The filename is given via \code{fileStoreAssoPerm}. If \code{TRUE}, 
#'   the computed "permutation" association/dissimilarity matrices can be reused
#'   via \code{fileLoadAssoPerm} to save runtime. Defaults to \code{FALSE}.
#' @param fileStoreAssoPerm character giving the file name to store a matrix
#'   containing a matrix with associations/dissimilarities for the permuted 
#'   data. Can also be a path.
#' @param storeCountsPerm logical indicating whether the permuted count matrices
#'   should be stored in an external file. Defaults to \code{FALSE}.
#' @param fileStoreCountsPerm character vector with two elements giving the 
#'   names of two files storing the permuted count matrices belonging to the 
#'   two groups.
#' @param assoPerm not used anymore.
#' @references
#'   \insertRef{gill2010statistical}{NetCoMi}\cr\cr
#'   \insertRef{knijnenburg2009fewer}{NetCoMi}\cr\cr
#'
#' @seealso \code{\link{diffnet}}
#' @keywords internal

.permTestDiffAsso <- function(countMat1, countMat2, countsJoint,
                               normCounts1, normCounts2,
                               assoMat1, assoMat2, 
                               paramsNetConstruct,
                               method = c("connect.pairs", 
                                          "connect.variables",
                                          "connect.network"), 
                               fisherTrans = TRUE,
                               pvalsMethod = "pseudo",
                               adjust = "lfdr", 
                               adjust2 = "holm",
                               trueNullMethod = "convest", 
                               alpha = 0.05,
                               lfdrThresh = 0.2, 
                               nPerm = 1000,
                               matchDesign = NULL, 
                               callNetConstr = NULL,
                               cores = 4,
                               verbose = TRUE, 
                               logFile = "log.txt",
                               seed = NULL, 
                               fileLoadAssoPerm  = NULL,
                               fileLoadCountsPerm = NULL,
                               storeAssoPerm = FALSE,
                               fileStoreAssoPerm = "assoPerm",
                               storeCountsPerm = FALSE,
                               fileStoreCountsPerm = c("countsPerm1", 
                                                       "countsPerm2"),
                               assoPerm = NULL) {
  
  measure <- paramsNetConstruct$measure
  measurePar <- paramsNetConstruct$measurePar
  zeroMethod <- paramsNetConstruct$zeroMethod
  zeroPar <- paramsNetConstruct$zeroPar
  needfrac <- paramsNetConstruct$needfrac
  needint <- paramsNetConstruct$needint
  normMethod <- paramsNetConstruct$normMethod
  normPar <- paramsNetConstruct$normPar
  jointPrepro <- paramsNetConstruct$jointPrepro

  if (!is.null(seed)) {
    set.seed(seed)
  }
  
  if (jointPrepro) {
    n1 <- nrow(normCounts1)
    n2 <- nrow(normCounts2)
    
    xbind <- rbind(normCounts1, normCounts2)
    
  } else {
    n1 <- nrow(countMat1)
    n2 <- nrow(countMat2)
    
    xbind <- rbind(countMat1, countMat2)
  }
  
  n <- n1 + n2
  nVar <- ncol(assoMat1)
  
  #_____________________________________________________
  
  if (!is.null(fileLoadAssoPerm)) {
    stopifnot(is.character(fileLoadAssoPerm))
    stopifnot(length(fileLoadAssoPerm) == 1)
    
    fmat <- fm.open(filenamebase = fileLoadAssoPerm, 
                    readonly = TRUE)
    
    if (!(dim(fmat)[1] == nVar * nPerm && dim(fmat)[2] == nVar * 2)) {
      stop("fileLoadAssoPerm has wrong dimensions. 'nPerm' might be set ", 
           "incorrectly (must equal the number of permutation matrices in ", 
           "'fileLoadAssoPerm').")
    }
    
    close(fmat)
    
  } else if (!is.null(fileLoadCountsPerm)) {
    stopifnot(is.character(fileLoadCountsPerm))
    stopifnot(length(fileLoadCountsPerm) == 2)
    
    fmat_counts1 <- fm.open(filenamebase = fileLoadCountsPerm[1], 
                            readonly = TRUE)
    
    fmat_counts2 <- fm.open(filenamebase = fileLoadCountsPerm[2], 
                            readonly = TRUE)
    
    if (!(nrow(fmat_counts1) == nPerm * n1 && 
          ncol(fmat_counts1) == nVar)) {
      stop("fileLoadCountsPerm has wrong dimensions. 'nPerm' might be set ", 
           "incorrectly (must equal the number of permutation matrices in ", 
           "'fileLoadCountsPerm').")
    }
    
    if (!(nrow(fmat_counts2) == nPerm * n2 && 
          ncol(fmat_counts2) == nVar)) {
      stop("fileLoadCountsPerm has wrong dimensions. 'nPerm' might be set ", 
           "incorrectly (must equal the number of permutation matrices in ", 
           "'fileLoadCountsPerm').")
    }
    
    close(fmat_counts1)
    close(fmat_counts2)
    
  } else {
    perm_group_mat <- .getPermGroupMat(n1 = n1, n2 = n2, n = n, nPerm = nPerm, 
                                         matchDesign = matchDesign)
  }
  
  #-----------------
  if (storeCountsPerm) {
    stopifnot(is.character(fileStoreCountsPerm))
    stopifnot(length(fileStoreCountsPerm) == 2)
    
    fmat_counts1 <- fm.create(filenamebase = fileStoreCountsPerm[1], 
                              nrow = (n1 * nPerm), ncol = nVar)
    fmat_counts2 <- fm.create(filenamebase = fileStoreCountsPerm[2], 
                              nrow = (n2 * nPerm), ncol = nVar)
    
    if (verbose) {
      message("Files '", 
              paste0(fileStoreCountsPerm[1], ".bmat, "),
              paste0(fileStoreCountsPerm[1], ".desc.txt, "),
              paste0(fileStoreCountsPerm[2], ".bmat, and "),
              paste0(fileStoreCountsPerm[2], ".desc.txt created. "))
    }
    
    close(fmat_counts1)
    close(fmat_counts2)
  }
  
  #-----------------
  if (storeAssoPerm) {
    stopifnot(is.character(fileStoreAssoPerm))
    stopifnot(length(fileStoreAssoPerm) == 1)
    
    fmat = fm.create(filenamebase = fileStoreAssoPerm, 
                     nrow = (nVar * nPerm), ncol = (2 * nVar))
    
    if (verbose) {
      message("Files '", 
              paste0(fileStoreAssoPerm, ".bmat and "),
              paste0(fileStoreAssoPerm, ".desc.txt created. "))
    }
    
    close(fmat)
  }
  
  #_____________________________________________________
  # generate teststatistics for permutated data
  
  if (!is.null(seed)) {
    seeds <- sample.int(1e8, size = nPerm)
  }
  
  if (verbose) message("Execute permutation tests ... ")
  
  if (cores > 1) {
    cl <- parallel::makeCluster(cores, outfile = "")
    doSNOW::registerDoSNOW(cl)
    if (!is.null(logFile)) cat("", file=logFile, append=FALSE)
    '%do_or_dopar%' <- get('%dopar%')
  } else {
    '%do_or_dopar%' <- get('%do%')
  }
  
  if (verbose) {
    pb <- utils::txtProgressBar(0, nPerm, style=3)
    
    progress <- function(n) {
      utils::setTxtProgressBar(pb,n)
    }
    
    opts <- list(progress=progress)
  } else {
    opts <- list()
  }
  
  p <- NULL
  
  #-----------------------------------------------------------------------------
  # Run foreach
  
  result <- foreach(
    p = 1:nPerm,
    .packages = c("filematrix"),
    .export = c(
      ".calcAssociation",
      "cclasso",
      "gcoda",
      ".diffConnectPairs",
      ".diffConnectVariables",
      ".diffConnectNetwork",
      ".getVecNames"
    ),
    .options.snow = opts
  ) %do_or_dopar% {
    
    
    if (!is.null(logFile)) {
      cat(paste("Iteration", p,"\n"),
          file=logFile, append=TRUE)
    }
    
    if (verbose) progress(p)
    
    if (!is.null(seed)) set.seed(seeds[p])
    
    if (!is.null(assoPerm)) {
      # load permutation association matrices (old version)
      assoMat1.tmp <- assoPerm[[1]][[p]]
      assoMat2.tmp <- assoPerm[[2]][[p]]
      count1.tmp <- count2.tmp <- NULL
      dimnames(assoMat1.tmp) <- dimnames(assoMat1)
      dimnames(assoMat2.tmp) <- dimnames(assoMat2)
      
    } else if (!is.null(fileLoadAssoPerm )) {
      
      fmat <- fm.open(filenamebase = fileLoadAssoPerm, 
                      readonly = TRUE)
      
      # load permutation asso/diss matrices
      assoMat1.tmp <- fmat[(p-1) * nVar + (1:nVar), 
                           1:nVar]
      assoMat2.tmp <- fmat[(p-1) * nVar + (1:nVar), 
                           nVar + (1:nVar)]
      
      dimnames(assoMat1.tmp) <- dimnames(assoMat1)
      dimnames(assoMat2.tmp) <- dimnames(assoMat2)
      
      count1.tmp <- count2.tmp <- NULL
      
      close(fmat)
      
    } else {
      
      if (!is.null(fileLoadCountsPerm)) {
        
        fmat_counts1 <- fm.open(filenamebase = 
                                  fileLoadCountsPerm[1], 
                                readonly = TRUE)
        
        fmat_counts2 <- fm.open(filenamebase = 
                                  fileLoadCountsPerm[2], 
                                readonly = TRUE)
        
        # load permutation count matrices
        count1.tmp <- 
          fmat_counts1[(p-1) * n1 + (1:n1), 1:nVar]
        
        count2.tmp <- 
          fmat_counts2[(p-1) * n2 + (1:n2), 1:nVar]
        
        close(fmat_counts1)
        close(fmat_counts2)
        
      } else {
        # generate permutation count matrices
        
        count1.tmp <- 
          xbind[which(perm_group_mat[p, ] == 1), ]
        
        count2.tmp <- 
          xbind[which(perm_group_mat[p, ] == 2), ]
        
        if (!jointPrepro) {
          # zero treatment and normalization necessary if
          # in network construction two count matrices 
          # were given or dissimilarity network is created
          
          suppressMessages(
            count1.tmp <- .zeroTreat(countMat = count1.tmp, 
                                     zeroMethod = zeroMethod,
                                     zeroParam = zeroPar, 
                                     needfrac = needfrac,
                                     needint = needint, 
                                     verbose = FALSE))
          
          suppressMessages(
            count2.tmp <- .zeroTreat(countMat = count2.tmp, 
                                     zeroMethod = zeroMethod,
                                     zeroParam = zeroPar, 
                                     needfrac = needfrac,
                                     needint = needint, 
                                     verbose = FALSE))
          
          suppressMessages(
            count1.tmp <- .normCounts(countMat = count1.tmp, 
                                      normMethod = normMethod,
                                      normParam = normPar, 
                                      zeroMethod = zeroMethod,
                                      needfrac = needfrac, 
                                      verbose = FALSE))
          
          suppressMessages(
            count2.tmp <- .normCounts(countMat = count2.tmp, 
                                      normMethod = normMethod,
                                      normParam = normPar, 
                                      zeroMethod = zeroMethod,
                                      needfrac = needfrac, 
                                      verbose = FALSE))
        }
        
        if (storeCountsPerm) {
          fmat_counts1 <- fm.open(filenamebase = 
                                    fileStoreCountsPerm[1])
          
          fmat_counts2 <- fm.open(filenamebase = 
                                    fileStoreCountsPerm[2])
          
          fmat_counts1[(p-1) * n1 + (1:n1), 
                       1:nVar] <- count1.tmp
          fmat_counts2[(p-1) * n2 + (1:n2), 
                       1:nVar] <- count2.tmp
          
          close(fmat_counts1)
          close(fmat_counts2)
        }
      }
      
      assoMat1.tmp <- .calcAssociation(count1.tmp,
                                       measure = measure,
                                       measurePar = measurePar,
                                       verbose = FALSE)
      
      assoMat2.tmp <- .calcAssociation(count2.tmp,
                                       measure = measure,
                                       measurePar = measurePar,
                                       verbose = FALSE)
      
      dimnames(assoMat1.tmp) <- dimnames(assoMat1)
      dimnames(assoMat2.tmp) <- dimnames(assoMat2)
      
      if (storeAssoPerm) {
        fmat <- fm.open(filenamebase = fileStoreAssoPerm)
        
        fmat[(p-1) * nVar + (1:nVar), 
             1:nVar] <- assoMat1.tmp
        fmat[(p-1) * nVar + (1:nVar), 
             nVar + (1:nVar)] <- assoMat2.tmp
        
        close(fmat)
      }
    }
    
    returnlist <- list()
    
    # teststatistics for simulated data
    if ("connect.pairs" %in% method) {
      connectPairs <- .diffConnectPairs(assoMat1.tmp,
                                         assoMat2.tmp,
                                         fisherTrans)
      returnlist[["connectPairs"]] <- connectPairs
    }
    if ("connect.variables" %in% method) {
      connectVariables <- .diffConnectVariables(assoMat1.tmp,
                                                 assoMat2.tmp,
                                                 nVar,
                                                 fisherTrans)
      returnlist[["connectVariables"]] <- connectVariables
    }
    if ("connect.network" %in% method) {
      connectNetwork <- .diffConnectNetwork(assoMat1.tmp,
                                             assoMat2.tmp,
                                             nVar,
                                             fisherTrans)
      returnlist[["connectNetwork"]] <- connectNetwork
    }
    
    returnlist
  }
  #-----------------------------------------------------------------------------
  
  if (cores > 1) parallel::stopCluster(cl)
  
  #____________________________________________________
  
  output <- list()
  
  if (verbose) close(pb) 
  
  # Define whether permutation test is exact or approximative
  if (is.null(matchDesign)) {
    if (nPerm == choose(n, n1)) {
      exact <- TRUE
    } else {
      exact <- FALSE
    }
  } else {
    if (nPerm == .getMaxCombMatch(matchDesign = matchDesign, n = n)) {
      exact <- TRUE
    } else {
      exact <- FALSE
    }
  }
  
  if ("connect.pairs" %in% method) {
    
    # test statistic for original data
    connectPairsOrig <- .diffConnectPairs(assoMat1, assoMat2, fisherTrans)
    
    # test statistics for simulated data
    connectPairs <- matrix(NA, nPerm, length(connectPairsOrig),
                           dimnames = list(1:nPerm, names(connectPairsOrig)))
    
    for (i in 1:nPerm) {
      connectPairs[i, ] <- result[[i]]$connectPairs
    }
    
    if (pvalsMethod == "pseudo") {
      
      if (exact) {
        # Exact permutation test
        pvalsVec <- sapply(1:ncol(connectPairs), function(i) {
          sum(connectPairs[, i] >= connectPairsOrig[i]) / nPerm
        })
        
      } else {
        # Approximated p-values
        pvalsVec <- sapply(1:ncol(connectPairs), function(i) {
          (sum(connectPairs[, i] >= connectPairsOrig[i]) + 1) / (nPerm + 1)
        })
      }
      
    } #else {
    #   pvalsVec <- calc_perm_pvals(tstatPerm = connectPairs,
    #                               tstatObs = connectPairsOrig,
    #                               nExceed = nExceed, ADalpha = 0.05)
    # }
    
    names(pvalsVec) <- names(connectPairsOrig)
    
    output[["pvalsVec"]] <- pvalsVec
    
    # adjust for multiple testing
    if (verbose & adjust != "none") {
      message("Adjust for multiple testing using '", adjust, "' ... ",
              appendLF = FALSE)
    }
    
    pAdjust <- multAdjust(pvals = pvalsVec, adjust = adjust,
                          trueNullMethod = trueNullMethod, verbose = verbose)
    
    if (verbose & adjust != "none") message("Done.")
    
    output[["pAdjustVec"]] <- pAdjust
    
    mat.tmp <- assoMat1
    mat.tmp[lower.tri(mat.tmp)] <- pvalsVec
    mat.tmp[upper.tri(mat.tmp)] <- t(mat.tmp)[upper.tri(t(mat.tmp))]
    pvalsMat <- mat.tmp
    
    output[["pvalsMat"]] <- pvalsMat
    
    if (adjust == "none") {
      output[["pAdjustMat"]] <- NULL
    } else {
      mat.tmp[lower.tri(mat.tmp)] <- output[["pAdjustVec"]]
      mat.tmp[upper.tri(mat.tmp)] <- t(mat.tmp)[upper.tri(t(mat.tmp))]
      output[["pAdjustMat"]] <- mat.tmp
    }
    
    output[["testStatData"]] <- connectPairsOrig
    
    output[["testStatPerm"]] <- connectPairs
    
  }
  
  if ("connect.variables" %in% method) {
    
    connectVariablesOrig <- .diffConnectVariables(assoMat1, assoMat2, nVar, 
                                                   fisherTrans)
    
    connectVariables <- matrix(NA, nPerm, length(connectVariablesOrig),
                               dimnames = list(1:nPerm,
                                               names(connectVariablesOrig)))
    
    for (i in 1:nPerm) {
      connectVariables[i, ] <- result[[i]]$connectVariables
    }
    
    if (exact) {
      # Exact permutation test
      pvalsConnectVariables <-
        sapply(1:ncol(connectVariables), function(i) {
          sum(connectVariables[, i] >= connectVariablesOrig[i]) / nPerm
        })
      
    } else {
      # Approximated p-values
      pvalsConnectVariables <-
        sapply(1:ncol(connectVariables), function(i) {
          (sum(connectVariables[, i] >= connectVariablesOrig[i]) + 1) / 
            (nPerm + 1)
        })
    }

    names(pvalsConnectVariables) <- names(connectVariablesOrig)
    
    output[["pvalsConnectVariables"]] <- pvalsConnectVariables
    
    # adjust for multiple testing
    if (adjust2 == "none") {
      output[["pAdjustConnectVariables"]] <- NULL
      
    } else if (adjust == "lfdr") {
      lfdr <- fdrtool::fdrtool(pvalsConnectVariables, statistic = "pvalue", 
                               plot = FALSE)$lfdr
      output[["pAdjustConnectVariables"]] <- lfdr
      
    } else {
      p.adj <- p.adjust(pvalsConnectVariables, adjust2)
      output[["pAdjustConnectVariables"]] <- p.adj
    }
    
  }
  
  if ("connect.network" %in% method) {
    connectNetworkOrig <- .diffConnectNetwork(assoMat1, assoMat2, nVar, 
                                               fisherTrans)
    
    connectNetwork <- numeric(nPerm)
    
    for (i in 1:nPerm) {
      connectNetwork[i] <- result[[i]]$connectNetwork
    }
    
    if (exact) {
      # Exact permutation test
      pvalConnectNetwork <- sum(connectNetwork >= connectNetworkOrig)/ nPerm
      
    } else {
      # Approximated p-values
      pvalConnectNetwork <- (sum(connectNetwork >= connectNetworkOrig) + 1) / 
        (nPerm + 1)
    }
    
    
    output[["pvalConnectNetwork"]] <- pvalConnectNetwork
  }
  
  return(output)
}



# calculate test statistic for differential connectivity for all variable pairs
.diffConnectPairs <- function(assoMat1, assoMat2, fisherTrans = TRUE) {
  
  # transform distance matrix to vector
  diag <- lower.tri(assoMat1, diag = FALSE)
  distvec1 <- assoMat1[diag]
  distvec2 <- assoMat2[diag]
  names(distvec1) <- names(distvec2) <- .getVecNames(assoMat1)
  
  if (fisherTrans) {
    # Fisher transformation of correlation coefficients
    z1 <- atanh(distvec1)
    z2 <- atanh(distvec2)
    diff <- abs(z1 - z2)
  } else {
    diff <- abs(distvec1 - distvec2)
  }
  return(diff)
}


# calculate test statistic for difference in connectivity between a single
# variable and all other variables
.diffConnectVariables <- function(assoMat1, assoMat2, nVar, fisherTrans = TRUE) {
  
  if (fisherTrans) {
    # Fisher transformation of correlation coefficients
    Z1 <- atanh(assoMat1)
    Z2 <- atanh(assoMat2)
    
    # build matrix with absolute differences of z-values
    diff <- abs(Z1 - Z2)
    diag(diff) <- 0
    
  } else {
    diff <- abs(assoMat1 - assoMat2)
  }
  
  ### test statistic
  d_vec <- numeric(nVar)
  
  # calculate test statistics for all variables
  for (i in 1:nVar) {
    d_vec[i] <- sum(diff[i, -i]) / (nVar - 1)
  }
  
  names(d_vec) <- colnames(assoMat1)
  return(d_vec)
}


# calculate test statistic for difference in connectivity for the whole network
.diffConnectNetwork <- function(assoMat1, assoMat2, nVar, fisherTrans = TRUE) {
  
  if (fisherTrans) {
    # Fisher transformation of correlation coefficients
    Z1 <- atanh(assoMat1)
    Z2 <- atanh(assoMat2)
    
    # build matrix with absolute differences of z-values
    diff <- abs(Z1 - Z2)
    diag(diff) <- 0
  } else {
    diff <- abs(assoMat1 - assoMat2)
  }
  
  # test statistic
  d <- (sum(diff) - sum(diag(diff))) / (nVar * (nVar-1))
  return(d)
}
stefpeschel/NetCoMi documentation built on Nov. 12, 2024, 7:12 a.m.