#' @title Plot Method for microNetProps Objects
#'
#' @description Plotting objects of class \code{microNetProps}.
#'
#' @aliases plot plot.microNetProps
#' @usage \method{plot}{microNetProps}(x,
#' layout = "spring",
#' sameLayout = FALSE,
#' layoutGroup = "union",
#' repulsion = 1,
#' groupNames = NULL,
#' groupsChanged = FALSE,
#' labels = NULL,
#' shortenLabels = "none",
#' labelLength = 6L,
#' labelPattern = c(5, "'", 3, "'", 3),
#' charToRm = NULL,
#' labelScale = TRUE,
#' labelFont = 1,
#' labelFile = NULL,
#'
#' # Nodes:
#' nodeFilter = "none",
#' nodeFilterPar = NULL,
#' rmSingles = "none",
#' nodeSize = "fix",
#' normPar = NULL,
#' nodeSizeSpread = 4,
#' nodeColor = "cluster",
#' colorVec = NULL,
#' featVecCol = NULL,
#' sameFeatCol = TRUE,
#' sameClustCol = TRUE,
#' sameColThresh = 2L,
#' nodeShape = NULL,
#' featVecShape = NULL,
#' nodeTransp = 60,
#' borderWidth = 1,
#' borderCol = "gray80",
#'
#' # Hubs:
#' highlightHubs = TRUE,
#' hubTransp = NULL,
#' hubLabelFont = NULL,
#' hubBorderWidth = NULL,
#' hubBorderCol = "black",
#'
#' # Edges:
#' edgeFilter = "none",
#' edgeFilterPar = NULL,
#' edgeInvisFilter = "none",
#' edgeInvisPar = NULL,
#' edgeWidth = 1,
#' negDiffCol = TRUE,
#' posCol = NULL,
#' negCol = NULL,
#' cut = NULL,
#' edgeTranspLow = 0,
#' edgeTranspHigh = 0,
#'
#' # Additional arguments:
#' cexNodes = 1,
#' cexHubs = 1.2,
#' cexLabels = 1,
#' cexHubLabels = NULL,
#' cexTitle = 1.2,
#' showTitle = NULL,
#' title1 = NULL,
#' title2 = NULL,
#' mar = c(1, 3, 3, 3),
#' doPlot = TRUE,
#' ...)
#'
#' @param x object of class \code{microNetProps}
#' @param layout indicates the layout used for defining node positions. Can be
#' a character with one of the layouts provided by
#' \code{\link[qgraph]{qgraph}}: \code{"spring"} (default), \code{"circle"},
#' or \code{"groups"}. Alternatively, the layouts provided by igraph (see
#' \code{\link[igraph:layout_]{layout_}} are accepted (must be given as
#' character, e.g. \code{"layout_with_fr"}). Can also be a matrix with row
#' number equal to the number of nodes and two columns corresponding to the x
#' and y coordinate.
#' @param sameLayout logical. Indicates whether the same layout should be used
#' for both networks. Ignored if \code{x} contains only one network. See
#' argument \code{layoutGroup}.
#' @param layoutGroup numeric or character. Indicates the group, where the
#' layout is taken from if argument \code{sameLayout} is \code{TRUE}.
#' The layout is computed for group 1 (and adopted for group 2) if set to "1"
#' and it is computed for group 2 if set to "2". Can alternatively be set to
#' "union" (default) to compute a union of both layouts, where the nodes are
#' placed as optimal as possible equally for both networks.
#' @param repulsion positive numeric value indicating the strength of repulsive
#' forces in the "spring" layout. Nodes are placed closer together for smaller
#' values and further apart for higher values. See the \code{repulsion}
#' argument of \code{\link[qgraph]{qgraph}}.
#' @param groupNames character vector with two entries naming the groups to
#' which the networks belong. Defaults to the group names returned by
#' \code{\link{netConstruct}}: If the data set is split according to a group
#' variable, its factor levels (in increasing order) are used. Ignored if
#' arguments \code{title1} and \code{title2} are set or if a single network is
#' plotted.
#' @param groupsChanged logical. Indicates the order in which the networks are
#' plotted. If \code{TRUE}, the order is exchanged. See details. Defaults to
#' \code{FALSE}.
#' @param labels defines the node labels. Can be a named character vector, which
#' is used for both groups (then, the adjacency matrices in \code{x} must
#' contain the same variables).
#' Can also be a list with two named vectors (names must match the row/column
#' names of the adjacency matrices). If \code{FALSE}, no labels are plotted.
#' Defaults to the row/column names of the adjacency matrices.
#' @param shortenLabels character indicating how to shorten node labels.
#' Ignored if node labels are defined via \code{labels}. NetCoMi's function
#' \code{\link{editLabels}()} is used for label editing.
#' Available options are:
#' \describe{
#' \item{\code{"intelligent"}}{Elements of \code{charToRm} are removed,
#' labels are shortened to length \code{labelLength}, and duplicates are
#' removed using \code{labelPattern}.}
#' \item{\code{"simple"}}{Elements of \code{charToRm} are removed and labels
#' are shortened to length \code{labelLength}.}
#' \item{\code{"none"}}{Default. Original dimnames of the adjacency matrices
#' are used.} }
#' @param labelLength integer defining the length to which labels shall
#' be shortened if \code{shortenLabels} is set to \code{"simple"} or
#' \code{"intelligent"}. Defaults to 6.
#' @param labelPattern vector of three or five elements, which is used if
#' argument \code{shortenLabels} is set to \code{"intelligent"}.
#' If cutting a label to length \code{labelLength} leads to duplicates,
#' the label is shortened according to \code{labelPattern},
#' where the first entry gives the length of the first part,
#' the second entry is used a separator, and the third entry
#' is the length of the third part. If \code{labelPattern} has five elements
#' and the shortened labels are still not unique,
#' the fourth element serves as further separator, and the fifth element gives
#' the length of the last label part. Defaults to c(5, "'", 3, "'", 3).
#' If the data contains, for example, three bacteria "Streptococcus1",
#' "Streptococcus2" and "Streptomyces", they are by default shortened to
#' "Strep'coc'1", "Strep'coc'2", and "Strep'myc".
#' @param charToRm vector with characters to remove from node names. Ignored if
#' labels are given via \code{labels}.
#' @param labelScale logical. If \code{TRUE}, node labels are scaled according
#' to node size
#' @param labelFont integer defining the font of node labels. Defaults to 1.
#' @param labelFile optional character of the form "<file name>.txt" naming a
#' file where the original and renamed node labels are stored. The file is
#' stored into the current working directory.
#' @param nodeFilter character indicating whether and how nodes should be
#' filtered. Possible values are:
#' \describe{
#' \item{\code{"none"}}{Default. All nodes are plotted.}
#' \item{\code{"highestConnect"}}{x nodes with highest connectivity (sum of
#' edge weights) are plotted.}
#' \item{\code{"highestDegree"}, \code{"highestBetween"},
#' \code{"highestClose"}, \code{"highestEigen"}}{x nodes with highest
#' degree/betweenness/closeness/eigenvector centrality are plotted.}
#' \item{\code{"clustTaxon"}}{Only nodes belonging the same cluster as to
#' variables that are given as character vector via \code{nodeFilterPar}.}
#' \item{\code{"clustMin"}}{Plotted are only nodes belonging to clusters with
#' a minimum number of nodes of x.}
#' \item{\code{"names"}}{Character vector with variable names to be
#' plotted}}\cr
#' Necessary parameters (e.g. "x") are given via the argument
#' \code{nodeFilterPar}.
#' @param nodeFilterPar parameters needed for the filtering method defined by
#' \code{nodeFilter}.
#' @param rmSingles character value indicating how to handle unconnected nodes.
#' Possible values are \code{"all"} (all single nodes are deleted),
#' \code{"inboth"} (only nodes that are unconnected in both networks are
#' removed) or \code{"none"} (default; no nodes are removed). Cannot be set to
#' \code{"all"}, if the same layout is used for both networks.
#' @param nodeSize character indicating how node sizes should be determined.
#' Possible values are: \describe{
#' \item{\code{"fix"}}{Default. All nodes have same size (hub size can be
#' defined separately via \code{cexHubs}).}
#' \item{\code{"degree"}, \code{"betweenness"}, \code{"closeness"},
#' \code{"eigenvector"}}{Size scaled according to node's centrality}
#' \item{\code{"counts"}}{Size scaled according to the sum of counts (of
#' microbes or samples, depending on what nodes express).}
#' \item{\code{"normCounts"}}{Size scaled according to the sum of normalized
#' counts (of microbes or samples), which are exported by
#' \code{netConstruct}.}
#' \item{\code{"TSS", "fractions", "CSS", "COM", "rarefy", "VST", "clr",
#' "mclr"}}{Size scaled according to the sum of normalized
#' counts. Available are the same options as for \code{normMethod} in
#' \code{\link{netConstruct}}. Parameters are set via \code{normPar}.}
#' }
#' @param normPar list with parameters passed to the function for normalization
#' if \code{nodeSize} is set to a normalization method. Used analogously to
#' \code{normPar} of \code{\link{netConstruct}()}.
#' @param nodeSizeSpread positive numeric value indicating the spread of node
#' sizes. The smaller the value, the more similar are the node sizes. Node
#' sizes are calculated by: (x - min(x)) / (max(x) - min(x)) * nodeSizeSpread
#' + cexNodes. For \code{nodeSizeSpread = 4} (default) and
#' \code{cexNodes = 1}, node sizes range from 1 to 5.
#' @param nodeColor a character specifying the node colors. Possible values are
#' \code{"cluster"} (colors according to determined clusters),
#' \code{"feature"} (colors according to node's features defined by
#' \code{featVecCol}), \code{"colorVec"} (the vector \code{colorVec}). For the
#' former two cases, the colors can be specified via \code{colorVec}. If
#' \code{colorVec} is not defined, the \code{rainbow} function from
#' \code{grDevices} package is used. Also accepted is a character value
#' defining a color, which is used for all nodes. If \code{NULL}, "grey40" is
#' used for all nodes.
#' @param colorVec a vector or list with two vectors used to specify node
#' colors. Different usage depending on the "nodeColor" argument:
#' \describe{
#' \item{\code{nodeColor = "cluster"}}{\code{colorVec} must be a vector.
#' Depending on the \code{sameClustCol} argument, the colors are used only in
#' one or both networks. If the vector is not long enough, a warning is
#' returned and colors from \code{rainbow()} are used for the remaining
#' clusters.}
#' \item{\code{nodeColor = "feature"}}{Defines a color for each level of
#' \code{featVecCol}. Can be a list with two vectors used for the two networks
#' (for a single network, only the first element is used) or a vector, which
#' is used for both groups if two networks are plotted.}
#' \item{\code{nodeColor = "colorVec"}}{\code{colorVec} defines a color for
#' each node implying that its names must match the node's names (which is
#' also ensured if names match the colnames of the original count matrix).
#' Can be a list with two vectors used for the two networks (for a single
#' network, only the first element is used) or a vector, which is used for
#' both groups if two networks are plotted.}}
#' @param featVecCol a vector with a feature for each node. Used for coloring
#' nodes if \code{nodeColor} is set to \code{"feature"}. Is coerced to a
#' factor. If \code{colorVec} is given, its length must be larger than or
#' equal to the number of feature levels.
#' @param sameFeatCol logical indicating whether the same color should be used
#' for same features in both networks (only used if two networks are plotted,
#' \code{nodeColor = "feature"}, and no color vector/list is given (via
#' \code{featVecCol})).
#' @param sameClustCol if TRUE (default) and two networks are plotted, clusters
#' having at least \code{sameColThresh} nodes in common have the same color.
#' Only used if \code{nodeColor} is set to \code{"cluster"}.
#' @param sameColThresh indicates how many nodes a cluster must have in common
#' in the two groups to have the same color. See argument \code{sameClustCol}.
#' Defaults to 2.
#' @param nodeShape character vector specifying node shapes. Possible values
#' are \code{"circle"} (default), \code{"square"}, \code{"triangle"}, and
#' \code{"diamond"}. If \code{featVecShape} is not \code{NULL}, the length of
#' \code{nodeShape} must equal the number of factor levels given by
#' \code{featVecShape}. Then, each shape is assigned to one factor level (in
#' increasing order). If \code{featVecShape} is \code{NULL}, the first shape
#' is used for all nodes. See the example.
#' @param featVecShape a vector with a feature for each node. If not \code{NULL},
#' a different node shape is used for each feature. Is coerced to factor mode.
#' The maximum number of factor levels is 4 corresponding to the four possible
#' shapes defined via \code{nodeShape}.
#' @param nodeTransp an integer between 0 and 100 indicating the transparency of
#' node colors. 0 means no transparency, 100 means full transparency. Defaults
#' to 60.
#' @param borderWidth numeric specifying the width of node borders. Defaults to
#' 1.
#' @param borderCol character specifying the color of node borders. Defaults to
#' "gray80"
#' @param highlightHubs logical indicating if hubs should be highlighted. If
#' \code{TRUE}, the following features can be defined separately for hubs:
#' transparency (by \code{hubTransp}), label font (by \code{hubLabelFont}),
#' border width (by \code{hubBorderWidth}), and border color (by
#' \code{hubBorderCol}).
#' @param hubTransp numeric between 0 and 100 specifying the color transparency
#' of hub nodes. See argument \code{nodeTransp}. Defaults to
#' \code{0.5*nodeTransp}. Ignored if \code{highlightHubs} is \code{FALSE}.
#' @param hubLabelFont integer specifying the label font of hub nodes. Defaults
#' to \code{2*labelFont}. Ignored if \code{highlightHubs} is \code{FALSE}.
#' @param hubBorderWidth numeric specifying the border width of hub nodes.
#' Defaults to \code{2*borderWidth}. Ignored if \code{highlightHubs} is
#' \code{FALSE}.
#' @param hubBorderCol character specifying the border color of hub nodes.
#' Defaults to \code{"black"}. Ignored if \code{highlightHubs} is
#' \code{FALSE}.
#' @param edgeFilter character specifying how edges are filtered.
#' Possible values are:
#' \describe{
#' \item{\code{"none"}}{Default. All edges are plotted.}
#' \item{\code{"threshold"}}{For association networks, only edges
#' corresponding to an absolute association >= x are plotted. For
#' dissimilarity networks, only edges corresponding to a dissimilarity <= x
#' are plotted. The behavior is similar to that of sparsification via threshold
#' in netConstruct().}
#' \item{\code{"highestWeight"}}{The first x edges with highest edge weight
#' are plotted.}
#' }
#' x is defined by \code{edgeFilterPar}, respectively.
#' @param edgeFilterPar numeric specifying the "x" in \code{edgeFilter}.
#' @param edgeInvisFilter similar to \code{edgeFilter} but the edges are removed
#' only after computing the layout so that edge removal does not influence the
#' layout. Defaults to \code{"none"}.
#' @param edgeInvisPar numeric specifying the "x" in \code{edgeInvisFilter}.
#' @param edgeWidth numeric specifying the edge width. See argument
#' \code{"edge.width"} of \code{\link[qgraph]{qgraph}}.
#' @param negDiffCol logical indicating if edges with a negative corresponding
#' association should be colored different. If \code{TRUE} (default), argument
#' \code{posCol} is used for edges with positive association and \code{negCol}
#' for those with negative association. If \code{FALSE} and for dissimilarity
#' networks, only \code{posCol} is used.
#' @param posCol vector (character or numeric) with one or two elements
#' specifying the color of edges with positive weight and also for edges with
#' negative weight if \code{negDiffCol} is set to \code{FALSE}. The first
#' element is used for edges with weight below \code{cut} and the second for
#' edges with weight above \code{cut}. If a single value is given, it is used
#' for both cases. Defaults to \code{c("#009900", "darkgreen")}.
#' @param negCol vector (character or numeric) with one or two elements
#' specifying the color of edges with negative weight. The first
#' element is used for edges with absolute weight below \code{cut} and the
#' second for edges with absolute weight above \code{cut}. If a single value
#' is given, it is used for both cases. Ignored if \code{negDiffCol} is
#' \code{FALSE}. Defaults to \code{c("red", "#BF0000")}.
#' @param cut defines the \code{"cut"} parameter of
#' \code{\link[qgraph]{qgraph}}. Can
#' be either a numeric value (is used for both groups if two networks are
#' plotted) or vector of length two. The default is set analogous to that in
#' \code{\link[qgraph]{qgraph}}: "0 for graphs with less then 20 nodes. For
#' larger graphs the cut value is automatically chosen to be equal to the
#' maximum of the 75th quantile of absolute edge strengths or the edge
#' strength corresponding to 2n-th edge strength (n being the number of
#' nodes.)" If two networks are plotted, the mean of the two determined cut
#' parameters is used so that edge thicknesses are comparable.
#' @param edgeTranspLow numeric value between 0 and 100 specifying the
#' transparency of edges with weight below \code{cut}. The higher this value,
#' the higher the transparency.
#' @param edgeTranspHigh analogous to \code{edgeTranspLow}, but used for edges
#' with weight ABOVE \code{cut}.
#' @param cexNodes numeric scaling node sizes. Defaults to 1.
#' @param cexHubs numeric scaling hub sizes. Only used if \code{nodeSize} is set
#' to \code{"hubs"}.
#' @param cexLabels numeric scaling node labels. Defaults to 1. If set to 0, no
#' node labels are plotted.
#' @param cexHubLabels numeric scaling the node labels of hub nodes. Equals
#' \code{cexLabels} by default. Ignored, if \code{highlightHubs = FALSE}.
#' @param cexTitle numeric scaling title(s). Defaults to 1.2.
#' @param showTitle if \code{TRUE}, a title is shown for each network, which is
#' either defined via \code{groupNames}, or \code{title1} and \code{title2}.
#' Defaults to \code{TRUE} if two networks are plotted and \code{FALSE} for
#' a single network.
#' @param title1 character giving a title for the first network.
#' @param title2 character giving a title for the second network (if existing).
#' @param mar a numeric vector of the form c(bottom, left, top, right) defining
#' the plot margins. Works similar to the \code{mar} argument in
#' \code{\link[graphics]{par}}. Defaults to c(1,3,3,3).
#' @param doPlot logical. If \code{FALSE}, the network plot is suppressed.
#' Useful for saving the output (e.g., the layout) without plotting.
#' @param ... further arguments being passed to \code{\link[qgraph]{qgraph}},
#' which is used for network plotting.
#'
#' @return Returns (invisibly) a list with the following elements: \tabular{ll}{
#' \code{q1,q2}\tab the qgraph object(s)\cr
#' \code{layout}\tab layout(s) specifying node positions\cr
#' \code{nodecolor}\tab one or two vectors with node colors (one for each
#' group) \cr
#' \code{labels}\tab one or two vectors with node labels}
#'
#' @examples
#' # Load data sets from American Gut Project (from SpiecEasi package)
#' data("amgut1.filt")
#'
#' # Network construction
#' amgut_net <- netConstruct(amgut1.filt, measure = "pearson",
#' filtTax = "highestVar",
#' filtTaxPar = list(highestVar = 50),
#' zeroMethod = "pseudoZO", normMethod = "clr",
#' sparsMethod = "threshold", thresh = 0.3)
#'
#' # Network analysis
#' amgut_props <- netAnalyze(amgut_net)
#'
#' ### Network plots ###
#' # Clusters are used for node coloring:
#' plot(amgut_props,
#' nodeColor = "cluster")
#'
#' # Remove singletons
#' plot(amgut_props,
#' nodeColor = "cluster",
#' rmSingles = TRUE)
#'
#' # A higher repulsion places nodes with high edge weight closer together
#' plot(amgut_props,
#' nodeColor = "cluster",
#' rmSingles = TRUE,
#' repulsion = 1.2)
#'
#' # A feature vector is used for node coloring
#' # (this could be a vector with phylum names of the ASVs)
#' set.seed(123456)
#' featVec <- sample(1:5, nrow(amgut1.filt), replace = TRUE)
#'
#' # Names must be equal to ASV names
#' names(featVec) <- colnames(amgut1.filt)
#'
#' plot(amgut_props,
#' rmSingles = TRUE,
#' nodeColor = "feature",
#' featVecCol = featVec,
#' colorVec = heat.colors(5))
#'
#' # Use a further feature vector for node shapes
#' shapeVec <- sample(1:3, ncol(amgut1.filt), replace = TRUE)
#' names(shapeVec) <- colnames(amgut1.filt)
#'
#' plot(amgut_props,
#' rmSingles = TRUE,
#' nodeColor = "feature",
#' featVecCol = featVec,
#' colorVec = heat.colors(5),
#' nodeShape = c("circle", "square", "diamond"),
#' featVecShape = shapeVec,
#' highlightHubs = FALSE)
#'
#' @importFrom qgraph qgraph
#' @importFrom graphics par title
#' @importFrom grDevices rainbow
#' @importFrom stats quantile
#' @importFrom WGCNA labels2colors
#' @importFrom utils write.table
#' @method plot microNetProps
#' @export
plot.microNetProps <- function(x,
layout = "spring",
sameLayout = FALSE,
layoutGroup = "union",
repulsion = 1,
groupNames = NULL,
groupsChanged = FALSE,
labels = NULL,
shortenLabels = "none",
labelLength = 6L,
labelPattern = c(5, "'", 3, "'", 3),
charToRm = NULL,
labelScale = TRUE,
labelFont = 1,
labelFile = NULL,
#nodes
nodeFilter = "none",
nodeFilterPar = NULL,
rmSingles = "none",
nodeSize = "fix",
normPar = NULL,
nodeSizeSpread = 4,
nodeColor = "cluster",
colorVec = NULL,
featVecCol = NULL,
sameFeatCol = TRUE,
sameClustCol = TRUE,
sameColThresh = 2L,
nodeShape = NULL,
featVecShape = NULL,
nodeTransp = 60,
borderWidth = 1,
borderCol = "gray80",
#hubs
highlightHubs = TRUE,
hubTransp = NULL,
hubLabelFont = NULL,
hubBorderWidth = NULL,
hubBorderCol = "black",
#edges
edgeFilter = "none",
edgeFilterPar = NULL,
edgeInvisFilter = "none",
edgeInvisPar = NULL,
edgeWidth = 1,
negDiffCol = TRUE,
posCol = NULL,
negCol = NULL,
cut = NULL,
edgeTranspLow = 0,
edgeTranspHigh = 0,
cexNodes = 1,
cexHubs = 1.2,
cexLabels = 1,
cexHubLabels = NULL,
cexTitle = 1.2,
showTitle = NULL,
title1 = NULL,
title2 = NULL,
mar = c(1, 3, 3, 3),
doPlot = TRUE,
...) {
argsIn <- as.list(environment())
argsOut <- .checkArgsPlotMNP(argsIn)
for (i in 1:length(argsOut)) {
assign(names(argsOut)[i], argsOut[[i]])
}
xgroups <- x$input$groups
isempty1 <- x$isempty$isempty1
isempty2 <- x$isempty$isempty2
# if twoNets==TRUE, two networks are plotted
twoNets <- x$input$twoNets
if (twoNets & !is.null(xgroups)) {
deletespace <- function(name) {
if (grepl(" ", strsplit(name, "")[[1]])[1]) {
gname <- strsplit(name, "")[[1]]
name <- paste(gname[-1], collapse = "")
}
name
}
xgroups[1] <- deletespace(xgroups[1])
xgroups[2] <- deletespace(xgroups[2])
}
opar <- par()
adja1_orig <- x$input$adjaMat1
#=============================================================================
# Edge and node filtering
dissMat1 <- if (is.null(x$input$dissEst1)) {
NULL
} else {
x$input$dissMat1
}
adja1 <- .filterEdges(adja = adja1_orig,
assoEst = x$input$assoMat1,
dissEst = dissMat1,
edgeFilter = edgeFilter,
edgeFilterPar = edgeFilterPar)
keep1 <- .filterNodes(adja = adja1, nodeFilter = nodeFilter,
nodeFilterPar = nodeFilterPar, layout = layout,
degree = x$centralities$degree1,
between = x$centralities$between1,
close = x$centralities$close1,
eigen = x$centralities$eigenv1,
cluster = x$clustering$clust1)
if (twoNets) {
adja2_orig <- x$input$adjaMat2
dissMat2 <- if (is.null(x$input$dissEst2)) {
NULL
} else {
x$input$dissMat2
}
adja2 <- .filterEdges(adja = adja2_orig,
assoEst = x$input$assoMat2,
dissEst = dissMat2,
edgeFilter = edgeFilter,
edgeFilterPar = edgeFilterPar)
keep2 <- .filterNodes(adja = adja2_orig, nodeFilter = nodeFilter,
nodeFilterPar = nodeFilterPar, layout = layout,
degree = x$centralities$degree2,
between = x$centralities$between2,
close = x$centralities$close2,
eigen = x$centralities$eigenv2,
cluster = x$clustering$clust2)
if (length(keep1) == 0 & length(keep2) == 0) {
stop("No nodes remaining in both networks after node filtering.")
}
if (sameLayout) {
keep.tmp <- union(keep1, keep2)
keep <- colnames(adja1)[colnames(adja1) %in% keep.tmp]
adja1 <- adja1[keep, keep]
adja2 <- adja2[keep, keep]
} else {
adja1 <- adja1[keep1, keep1]
adja2 <- adja2[keep2, keep2]
}
} else {
if (length(keep1) == 0) {
stop("No nodes remaining after node filtering.")
}
adja1 <- adja1[keep1, keep1]
adja2 <- NULL
adja2_orig <- NULL
}
if (rmSingles != "none") {
adja1.tmp <- adja1
diag(adja1.tmp) <- 0
zeros1 <- sapply(1:nrow(adja1.tmp), function(i) {
all(adja1.tmp[i, ] == 0) })
names(zeros1) <- colnames(adja1.tmp)
if (any(zeros1 == TRUE)) {
torm1 <- which(zeros1 == TRUE)
} else {
torm1 <- NULL
}
if (twoNets) {
adja2.tmp <- adja2
diag(adja2.tmp) <- 0
zeros2 <- sapply(1:nrow(adja2.tmp), function(i) {
all(adja2.tmp[i, ] == 0) })
names(zeros2) <- colnames(adja2.tmp)
if (any(zeros1 == TRUE)) {
torm2 <- which(zeros2 == TRUE)
} else {
torm2 <- NULL
}
torm_both <- intersect(torm1, torm2)
if (rmSingles == "inboth" & length(torm_both) != 0) {
adja1 <- adja1.tmp[-torm_both, -torm_both]
adja2 <- adja2.tmp[-torm_both, -torm_both]
} else if (rmSingles == "all") {
if (sameLayout) {
if (length(torm_both) != 0) {
warning('Argument "rmSingles" set to "inboth"',
' due to the same layout.')
adja1 <- adja1.tmp[-torm_both, -torm_both]
adja2 <- adja2.tmp[-torm_both, -torm_both]
}
} else {
if (length(torm1) != 0) adja1 <- adja1.tmp[-torm1, -torm1]
if (length(torm2) != 0) adja2 <- adja2.tmp[-torm2, -torm2]
}
}
isempty1 <- all(adja1[upper.tri(adja1)] == 0)
isempty2 <- all(adja2[upper.tri(adja2)] == 0)
} else {
if (length(torm1) != 0) adja1 <- adja1.tmp[-torm1, -torm1]
isempty1 <- all(adja1[upper.tri(adja1)] == 0)
isempty2 <- NULL
if (isempty1) stop("Network is empty and cannot be plotted.")
}
}
kept1 <- which(colnames(adja1_orig) %in% colnames(adja1))
kept2 <- which(colnames(adja2_orig) %in% colnames(adja2))
#==========================================================================
# Node colors
if (nodeColor == "cluster") {
if (!is.null(colorVec)) {
if (is.list(colorVec)) {
stop("'colorVec' must be a vector if clusters are used for node colors.
Consider setting 'sameColThresh' to a high value.")
}
stopifnot(is.vector(colorVec))
}
clust1 <- x$clustering$clust1
clust2 <- x$clustering$clust2
if (!(is.null(clust1) & is.null(clust2))) {
clustcolors <- .getClustCols(clust1 = clust1, clust2 = clust2,
adja1 = adja1, adja2 = adja2,
kept1 = kept1, kept2 = kept2,
isempty1 = isempty1, isempty2 = isempty2,
colorVec = colorVec,
sameClustCol = sameClustCol,
sameColThresh = sameColThresh,
twoNets = twoNets)
nodecol1 <- clustcolors$clustcol1
nodecol2 <- clustcolors$clustcol2
} else {
message('No clusterings determined.')
nodecol1 <- rep("grey40", ncol(adja1))
if (twoNets) {
nodecol2 <- rep("grey40", ncol(adja2))
} else {
nodecol2 <- NULL
}
}
} else if (nodeColor == "feature") {
featVecCol <- as.factor(featVecCol)
stopifnot(all(colnames(adja1) %in% names(featVecCol)))
if (is.null(colorVec)) {
if (sameFeatCol) {
colorVec1 <- colorVec2 <- grDevices::rainbow(length(levels(featVecCol)))
} else {
cols <- grDevices::rainbow(2 * length(levels(featVecCol)))
colorVec1 <- cols[seq.int(1L, length(cols), 2L)]
colorVec2 <- cols[seq.int(2L, length(cols), 2L)]
}
} else {
if (is.list(colorVec)) {
stopifnot(length(colorVec) == 2)
colorVec1 <- colorVec[[1]]
colorVec2 <- colorVec[[2]]
if (length(colorVec1) < length(levels(featVecCol)) ||
length(colorVec2) < length(levels(featVecCol))) {
stop("Length of color vector(s) (argument 'colorVec') shorter than
number of levels of 'featVecCol'.")
}
} else {
if (length(colorVec) < length(levels(featVecCol))) {
stop(paste("Argument 'featVecCol' has", length(levels(featVecCol)),
"levels but 'colorVec' has only length ",
length(colorVec)))
}
colorVec1 <- colorVec2 <- colorVec
}
}
feature1 <- featVecCol[colnames(adja1)]
nodecol1 <- character(length(feature1))
for (i in seq_along(levels(feature1))) {
nodecol1[feature1 == levels(feature1)[i]] <- colorVec1[i]
}
nodecol2 <- NULL
if (twoNets) {
stopifnot(all(colnames(adja2) %in% names(featVecCol)))
feature2 <- featVecCol[colnames(adja2)]
nodecol2 <- character(length(feature2))
for (i in seq_along(levels(feature2))) {
nodecol2[feature2 == levels(feature2)[i]] <- colorVec2[i]
}
}
} else if (nodeColor == "colorVec") {
if (is.list(colorVec)) {
stopifnot(length(colorVec) == 2)
colorVec1 <- colorVec[[1]]
colorVec2 <- colorVec[[2]]
} else {
colorVec1 <- colorVec2 <- colorVec
}
stopifnot(all(colnames(adja1) %in% names(colorVec1)))
nodecol1 <- colorVec1[colnames(adja1)]
nodecol2 <- NULL
if (twoNets) {
stopifnot(all(colnames(adja2) %in% names(colorVec2)))
nodecol2 <- colorVec2[colnames(adja2)]
}
} else if (is.character(nodeColor)) {
nodecol1 <- rep(nodeColor, ncol(adja1))
nodecol2 <- NULL
if (twoNets) {
nodecol2 <- rep(nodeColor, ncol(adja2))
}
} else {
nodecol1 <- rep("grey40", ncol(adja1))
if (twoNets) {
nodecol2 <- rep("grey40", ncol(adja2))
}
}
if (nodeTransp > 0) {
nodecol1 <- colToTransp(nodecol1, nodeTransp)
if (twoNets) {
nodecol2 <- colToTransp(nodecol2, nodeTransp)
}
}
#==========================================================================
# Node shapes
if (is.null(featVecShape)) {
if (is.null(nodeShape)) {
nodeShape1 <- nodeShape2 <- "circle"
} else {
nodeShape2 <- nodeShape2 <- nodeShape[1]
}
} else {
stopifnot(all(colnames(adja1) %in% names(featVecShape)))
shape_fact <- as.factor(featVecShape)
nlevel <- length(levels(shape_fact))
if (nlevel > 4) {
stop("Argument 'featVecShape' may at most have four factor levels.")
}
if (is.null(nodeShape)) {
nodeShape <- c("circle", "square", "triangle", "diamond")
} else {
if (length(nodeShape) < nlevel) {
stop(paste("Argument 'nodeShape' must have length", nlevel,
"because 'featVecShape' has", nlevel, "levels."))
}
}
shapeVec <- as.character(featVecShape)
names(shapeVec) <- names(featVecShape)
for (i in 1:nlevel) {
shapeVec[featVecShape == levels(shape_fact)[i]] <- nodeShape[i]
}
nodeShape1 <- shapeVec[colnames(adja1)]
if (twoNets) {
stopifnot(all(colnames(adja2) %in% names(featVecShape)))
nodeShape2 <- shapeVec[colnames(adja2)]
}
}
#==========================================================================
# Node sizes
if (!is.numeric(nodeSize)) {
if (is.null(x$input$countMat1)) {
counts.tmp <- x$input$countsJoint
} else {
counts.tmp <- x$input$countMat1
}
nodeSize1 <- .getNodeSize(nodeSize = nodeSize, normPar = normPar,
nodeSizeSpread = nodeSizeSpread,
adja = adja1, countMat = counts.tmp,
normCounts = x$input$normCounts1,
assoType = x$input$assoType, kept = kept1,
cexNodes = cexNodes, cexHubs = cexHubs,
hubs = x$hubs$hubs1,
highlightHubs = highlightHubs,
degree = x$centralities$degree1,
between = x$centralities$between1,
close = x$centralities$close1,
eigen = x$centralities$eigenv1)
if (twoNets) {
if (is.null(x$input$countMat2)) {
counts.tmp <- x$input$countsJoint
} else {
counts.tmp <- x$input$countMat2
}
nodeSize2 <- .getNodeSize(nodeSize = nodeSize, normPar = normPar,
nodeSizeSpread = nodeSizeSpread,
adja = adja2, countMat = counts.tmp,
normCounts = x$input$normCounts2,
assoType = x$input$assoType, kept = kept2,
cexNodes = cexNodes, cexHubs = cexHubs,
hubs = x$hubs$hubs2,
highlightHubs = highlightHubs,
degree = x$centralities$degree2,
between = x$centralities$between2,
close = x$centralities$close2,
eigen = x$centralities$eigenv2)
}
rm(counts.tmp)
}
#===============================================
# Border colors and fonts
border1 <- rep(borderCol, nrow(adja1))
labelFont1 <- rep(labelFont, nrow(adja1))
borderWidth1 <- rep(borderWidth, nrow(adja1))
if (highlightHubs) {
if (is.null(hubLabelFont)) {
hubLabelFont <- labelFont * 2
}
if (is.null(hubBorderWidth)) {
hubBorderWidth <- borderWidth * 2
}
if (is.null(hubTransp)) {
hubTransp <- nodeTransp / 2
}
hubs1 <- x$hubs$hubs1
hubs1 <- hubs1[hubs1 %in% colnames(adja1)]
border1[match(hubs1, rownames(adja1))] <- hubBorderCol
labelFont1[match(hubs1, rownames(adja1))] <- hubLabelFont
borderWidth1[match(hubs1, rownames(adja1))] <- hubBorderWidth
if (nodeTransp != hubTransp) {
hubcol1 <- colToTransp(nodecol1, hubTransp)
nodecol1[rownames(adja1) %in% hubs1] <-
hubcol1[rownames(adja1) %in% hubs1]
}
}
if (twoNets) {
border2 <- rep(borderCol, nrow(adja2))
labelFont2 <- rep(labelFont, nrow(adja2))
borderWidth2 <- rep(borderWidth, nrow(adja2))
if (highlightHubs) {
hubs2 <- x$hubs$hubs2
hubs2 <- hubs2[hubs2 %in% colnames(adja2)]
border2[match(hubs2, rownames(adja2))] <- hubBorderCol
labelFont2[match(hubs2, rownames(adja2))] <- hubLabelFont
borderWidth2[match(hubs2, rownames(adja2))] <- hubBorderWidth
if (nodeTransp != hubTransp) {
hubcol2 <- colToTransp(nodecol2, hubTransp)
nodecol2[rownames(adja2) %in% hubs2] <-
hubcol2[rownames(adja2) %in% hubs2]
}
}
}
#==========================================================================
# Title
if (showTitle) {
if (twoNets) {
if (is.null(title1) || is.null(title2)) {
if (is.null(groupNames)) {
main1 = paste0("group '" , xgroups[1], "'" )
main2 = paste0("group '" , xgroups[2], "'" )
} else {
stopifnot(length(groupNames) == 2)
main1 = as.character(groupNames[1])
main2 = as.character(groupNames[2])
}
} else {
main1 <- title1
main2 <- title2
}
} else {
if (is.null(title1)) {
main1 <- ""
warning('Argument "showTitle" is TRUE, but no title was defined.')
} else {
main1 <- title1
}
}
}
#==========================================================================
# Define cut parameter for qgraph()
if (!is.null(cut) & (length(cut) == 1)) {
stopifnot(is.numeric(cut))
cut1 <- cut2 <- cut
} else if (!is.null(cut) & (length(cut) == 2)) {
stopifnot(is.numeric(cut))
cut1 <- cut[1]
cut2 <- cut[2]
} else {
weights1 <- adja1[upper.tri(adja1)]
weights1 <- weights1[abs(weights1) > 0]
nNodes1 <- ncol(adja1)
if (twoNets) {
weights2 <- adja2[upper.tri(adja2)]
weights2 <- weights2[abs(weights2) > 0]
nNodes2 <- ncol(adja2)
} else {
weights2 <- 0
nNodes2 <- 1
}
if (length(weights1) > (3 * nNodes1) || length(weights2) > (3 * nNodes2)) {
cut1 <- max(sort(abs(weights1), decreasing = TRUE)[2 * nNodes1],
quantile(abs(weights1), 0.75))
cut2 <- ifelse(twoNets,
max(sort(abs(weights2), decreasing = TRUE)[2 * nNodes2],
quantile(abs(weights2), 0.75)), 0)
} else if (length(weights1) > 1 || length(weights2) > 1) {
cut1 <- quantile(abs(weights1), 0.75)
cut2 <- ifelse(twoNets, quantile(abs(weights2), 0.75), 0)
} else {
cut1 <- 0
cut2 <- 0
}
if (twoNets) {
cut1 <- cut2 <- mean(c(cut1, cut2))
}
}
#==========================================================================
# Layout
if (twoNets & sameLayout & layoutGroup == "union") {
graph1 <- igraph::graph_from_adjacency_matrix(adja1, weighted = TRUE)
graph2 <- igraph::graph_from_adjacency_matrix(adja2, weighted = TRUE)
graph_u <- igraph::union(graph1, graph2)
# element-wise minimum of edge weights
E(graph_u)$weight <- pmin(E(graph_u)$weight_1,
E(graph_u)$weight_2,
na.rm = TRUE)
graph_u <- igraph::delete_edge_attr(graph_u, "weight_1")
graph_u <- igraph::delete_edge_attr(graph_u, "weight_2")
if (is.function(layout)) {
lay1 <- layout(graph_u)
} else {
adja_u <- as.matrix(as_adjacency_matrix(graph_u, attr = "weight",
sparse = T))
lay1 <- qgraph(adja_u, color = nodecol1, layout = layout,
vsize = nodeSize1, labels = colnames(adja1),
label.scale = labelScale,
border.color = border1, border.width = borderWidth1,
label.font = labelFont1, label.cex = cexLabels,
edge.width = edgeWidth, repulsion = repulsion, cut = cut1,
shape = nodeShape1, DoNotPlot = TRUE, ...)$layout
}
rownames(lay1) <- rownames(adja1)
lay2 <- lay1
} else {
# Group 1
if (is.matrix(layout)) {
lay1 <- layout
} else if (is.list(layout)) {
lay1 <- layout[[1]]
} else if (is.function(layout)) {
gr <- graph_from_adjacency_matrix(adja1, mode = "undirected",
weighted = TRUE, diag = FALSE)
lay1 <- layout(gr)
rownames(lay1) <- colnames(adja1)
} else {
lay1 <- qgraph(adja1, color = nodecol1, layout = layout, vsize = nodeSize1,
labels = colnames(adja1),label.scale = labelScale,
border.color = border1, border.width = borderWidth1,
label.font = labelFont1, label.cex = cexLabels,
edge.width = edgeWidth, repulsion = repulsion, cut = cut1,
DoNotPlot = TRUE, shape = nodeShape1, ...)$layout
rownames(lay1) <- rownames(adja1)
}
lay2 <- NULL
#--------------------------------------------
# Group 2
if (twoNets) {
if (is.matrix(layout)) {
lay2 <- layout
} else if (is.list(layout)) {
lay2 <- layout[[2]]
} else if (is.function(layout)) {
gr <- igraph::graph_from_adjacency_matrix(adja2, mode = "undirected",
weighted = TRUE, diag = FALSE)
lay2 <- layout(gr)
rownames(lay2) <- colnames(adja2)
} else {
lay2 <- qgraph(adja2,
color = nodecol2,
layout = layout,
vsize = nodeSize2,
labels = colnames(adja2),
label.scale = labelScale,
border.color = border2,
border.width = borderWidth2,
label.font = labelFont2,
label.cex = cexLabels,
edge.width = edgeWidth,
repulsion = repulsion,
cut = cut2,
DoNotPlot = TRUE,
shape = nodeShape2,
... )$layout
rownames(lay2) <- rownames(adja2)
}
if (sameLayout) {
if (layoutGroup == 1) {
lay2 <- lay1
} else {
lay1 <- lay2
}
}
}
}
#==========================================================================
# Edge colors
if (is.null(posCol)) {
poscol1 <- "#009900"
poscol2 <- "darkgreen"
} else {
if (length(posCol) == 2) {
poscol1 <- posCol[1]
poscol2 <- posCol[2]
} else {
poscol1 <- poscol2 <- posCol
}
}
if (is.null(negCol)) {
negcol1 <- "red"
negcol2 <- "#BF0000"
} else if (negCol == FALSE) {
negcol1 <- poscol1
negcol2 <- poscol2
} else {
if (length(negCol) == 2) {
negcol1 <- negCol[1]
negcol2 <- negCol[2]
} else {
negcol1 <- negcol2 <- negCol
}
}
if (edgeTranspLow > 0) { # transparency for values below cut
poscol1 <- colToTransp(poscol1, edgeTranspLow)
negcol1 <- colToTransp(negcol1, edgeTranspLow)
}
if (edgeTranspHigh > 0) { # transparency for values above cut
poscol2 <- colToTransp(poscol2, edgeTranspHigh)
negcol2 <- colToTransp(negcol2, edgeTranspHigh)
}
if (!is.null(x$input$assoEst1)) {
assoMat1 <- x$input$assoEst1
} else {
assoMat1 <- x$input$dissScale1
}
#--------------------------------------------
# Edge colors (group 1)
if (x$input$assoType == "dissimilarity") {
assoMat1 <- x$input$dissEst1
} else {
assoMat1 <- x$input$assoEst1
}
if (negDiffCol) {
colmat1 <- matrix(NA, ncol(assoMat1), ncol(assoMat1),
dimnames = dimnames(assoMat1))
colmat1[assoMat1 < 0] <- negcol1
colmat1[assoMat1 >= 0] <- poscol1
colmat1 <- colmat1[kept1, kept1]
colmat1[abs(adja1) >= cut1 & colmat1 == poscol1] <- poscol2
colmat1[abs(adja1) >= cut1 & colmat1 == negcol1] <- negcol2
} else {
colmat1 <- matrix(poscol1, ncol(assoMat1), ncol(assoMat1),
dimnames = dimnames(assoMat1))
colmat1 <- colmat1[kept1, kept1]
colmat1[abs(adja1) >= cut1 & colmat1 == poscol1] <- poscol2
}
#--------------------------------------------
# # plot dissimilarity values instead of similarities
# if (plotdiss) {
# adja1 <- 1-adja1
# adja1[adja1 == 1] <- 0
#
# adja2 <- 1-adja2
# adja2[adja2 == 1] <- 0
# }
#--------------------------------------------
# Labels (group 1)
labels1.orig <- rownames(adja1)
if (is.null(labels) || (is.logical(labels) && labels == TRUE)) {
labels1 <- editLabels(rownames(adja1),
shortenLabels = shortenLabels,
labelLength = labelLength,
labelPattern = labelPattern,
addBrack = TRUE,
charToRm = charToRm,
verbose = FALSE)
} else if (is.logical(labels) && labels == FALSE) {
labels1 <- labels
} else if (is.list(labels)) {
stopifnot(all(colnames(adja1) %in% names(labels[[1]])))
labels1 <- labels[[1]][colnames(adja1)]
} else if (is.vector(labels)) {
stopifnot(all(colnames(adja1) %in% names(labels)))
labels1 <- labels[colnames(adja1)]
} else {
stop("Argument 'labels' must be either a named vector with a label for each
node, or a list of length 2 naming the nodes in each network.")
}
#--------------------------------------------
# Label size (group 1)
if (!is.null(labels) && is.logical(labels) && labels == FALSE) {
cexLabels1 <- 0
} else {
if (highlightHubs) {
if (is.null(cexHubLabels)) {
cexHubLabels <- cexLabels
}
cexLabels1 <- rep(cexLabels, length(labels1))
cexLabels1[match(hubs1, rownames(adja1))] <- cexHubLabels
} else {
cexLabels1 <- cexLabels
}
if (any(cexLabels1 == 0)) {
labels1[cexLabels1 == 0] <- ""
}
}
#--------------------------------------------
# Filter edges without influencing the layout (group 1)
if (edgeInvisFilter != "none") {
adja1 <- .filterEdges(adja1,
assoEst = x$input$assoMat1,
dissEst = dissMat1,
edgeFilter = edgeInvisFilter,
edgeFilterPar = edgeInvisPar)
}
#==========================================================================
if (twoNets) {
# Edge colors (group 2)
if (x$input$assoType == "dissimilarity") {
assoMat2 <- x$input$dissEst2
} else {
assoMat2 <- x$input$assoEst2
}
if (negDiffCol) {
colmat2 <- matrix(NA, ncol(assoMat2), ncol(assoMat2),
dimnames = dimnames(assoMat2))
colmat2[assoMat2 < 0] <- negcol1
colmat2[assoMat2 >= 0] <- poscol1
colmat2 <- colmat2[kept2, kept2]
colmat2[abs(adja2) >= cut2 & colmat2 == poscol1] <- poscol2
colmat2[abs(adja2) >= cut2 & colmat2 == negcol1] <- negcol2
} else {
colmat2 <- matrix(poscol1, ncol(assoMat2), ncol(assoMat2),
dimnames = dimnames(assoMat2))
colmat2 <- colmat2[kept2, kept2]
colmat2[abs(adja2) >= cut2 & colmat2 == poscol1] <- poscol2
}
#--------------------------------------------
# Labels (group 2)
labels2.orig <- rownames(adja2)
if (is.null(labels) || (is.logical(labels) && labels == TRUE)) {
labels2 <- editLabels(rownames(adja2),
shortenLabels = shortenLabels,
labelLength = labelLength,
labelPattern = labelPattern,
addBrack = TRUE,
charToRm = charToRm,
verbose = FALSE)
} else if (is.logical(labels) && labels == FALSE) {
labels2 <- labels
} else if (is.list(labels)) {
stopifnot(all(colnames(adja2) %in% names(labels[[2]])))
labels2 <- labels[[2]][colnames(adja2)]
} else if (is.vector(labels)) {
stopifnot(all(colnames(adja2) %in% names(labels)))
labels2 <- labels[colnames(adja2)]
}
# store label names to file
if (!is.null(labelFile) && !is.logical(labels)) {
stopifnot(is.character(labelFile))
labelMat <- cbind(labels1, labels1.orig)
labelMat <- rbind(c("Renamed", "Original"), labelMat)
labelMat <- rbind(c(" ", " "), labelMat)
labelMat <- rbind(c("Network 1:", " "), labelMat)
dframe <- data.frame(labelMat, stringsAsFactors=FALSE)
# apply format over each column for alignment
if (shortenLabels != "none") {
formWidth <- max(suppressWarnings(sum(as.numeric(labelPattern),
na.rm = TRUE)),
labelLength) + 4
} else {
formWidth <- 12
}
dframe <- apply(dframe, 2, format, width = formWidth)
utils::write.table(dframe, labelFile, quote=FALSE, row.names=FALSE,
col.names = FALSE, append = FALSE)
labelMat <- cbind(labels2, labels2.orig)
labelMat <- rbind(c("Renamed", "Original"), labelMat)
labelMat <- rbind(c(" ", " "), labelMat)
labelMat <- rbind(c("Network 2:", " "), labelMat)
labelMat <- rbind(c(" ", " "), labelMat)
dframe <- data.frame(labelMat, stringsAsFactors=FALSE)
# apply format over each column for alignment
dframe <- apply(dframe, 2, format, width = formWidth)
utils::write.table(dframe, labelFile, quote=FALSE, row.names=FALSE,
col.names = FALSE, append = TRUE)
}
#--------------------------------------------
# Label size (group 2)
if (!is.null(labels) && is.logical(labels) && labels == FALSE) {
cexLabels2 <- 0
} else {
if (highlightHubs) {
cexLabels2 <- rep(cexLabels, length(labels2))
cexLabels2[match(hubs2, rownames(adja2))] <- cexHubLabels
} else {
cexLabels2 <- cexLabels
}
if (any(cexLabels2 == 0)) {
labels2[cexLabels2 == 0] <- ""
}
}
#--------------------------------------------
# Filter edges without influencing the layout (group 2)
if (edgeInvisFilter != "none") {
adja2 <- .filterEdges(adja2,
assoEst = x$input$assoMat2,
dissEst = dissMat2,
edgeFilter = edgeInvisFilter,
edgeFilterPar = edgeInvisPar)
}
} else { #single network
# store label names to file
if (!is.null(labelFile) && !is.logical(labels)) {
stopifnot(is.character(labelFile))
labelMat <- cbind(labels1, labels1.orig)
labelMat <- rbind(c("Renamed", "Original"), labelMat)
dframe <- data.frame(labelMat, stringsAsFactors=FALSE)
# apply format over each column for alignment
if (shortenLabels != "none") {
formWidth <- max(suppressWarnings(sum(as.numeric(labelPattern),
na.rm = TRUE)),
labelLength) + 4
} else {
formWidth <- 12
}
dframe <- apply(dframe, 2, format, width = formWidth)
utils::write.table(dframe, labelFile, quote=FALSE, row.names=FALSE,
col.names = FALSE, append = FALSE)
}
}
#=============================================================================
# Plot network(s)
if (twoNets) {
par(mfrow = c(1,2), xpd=NA)
if (groupsChanged) {
q2 <- qgraph(adja2,
color = nodecol2,
layout = lay2,
vsize = nodeSize2,
labels = labels2,
label.scale = labelScale,
border.color = border2,
border.width = borderWidth2,
label.font = labelFont2,
label.cex = cexLabels2,
edge.width = edgeWidth,
edge.color = colmat2,
repulsion = repulsion,
cut = cut2,
mar = mar,
shape = nodeShape2,
DoNotPlot = !doPlot,
...)
if (showTitle & doPlot) title(main = list(main2, cex = cexTitle))
}
q1 <- qgraph(adja1,
color = nodecol1,
layout = lay1,
vsize = nodeSize1,
labels = labels1,
label.scale = labelScale,
border.color = border1,
border.width = borderWidth1,
label.font = labelFont1,
label.cex = cexLabels1,
edge.width = edgeWidth,
edge.color = colmat1,
repulsion = repulsion,
cut = cut1,
mar = mar,
shape = nodeShape1,
DoNotPlot = !doPlot,
...)
if (showTitle & doPlot) title(main = list(main1, cex = cexTitle))
if (!groupsChanged) {
q2 <- qgraph(adja2,
color = nodecol2,
layout = lay2,
vsize = nodeSize2,
labels = labels2,
label.scale = labelScale,
border.color = border2,
border.width = borderWidth2,
label.font = labelFont2,
label.cex = cexLabels2,
edge.width = edgeWidth,
edge.color = colmat2,
repulsion = repulsion,
cut = cut2,
mar = mar,
shape = nodeShape2,
DoNotPlot = !doPlot,
...)
if (showTitle & doPlot) title(main = list(main2, cex = cexTitle))
}
#---------------------------------------------
} else {
par(xpd=NA)
q1 <- qgraph(adja1,
color = nodecol1,
layout = lay1,
vsize = nodeSize1,
labels = labels1,
label.scale = labelScale,
border.color = border1,
border.width = borderWidth1,
label.font = labelFont1,
label.cex = cexLabels1,
edge.width = edgeWidth,
edge.color = colmat1,
repulsion = repulsion,
cut = cut1,
mar = mar,
shape = nodeShape1,
DoNotPlot = !doPlot,
...)
if (showTitle & doPlot) title(main = list(main1, cex = cexTitle))
q2 <- NULL
labels2 <- NULL
}
layout.out <- list(layout1 = lay1, layout2 = lay2)
nodecol.out <- list(nodecol1 = nodecol1, nodecol2 = nodecol2)
labels.out <- list(labels1 = labels1, labels2 = labels2)
output <- list(q1 = q1, q2 = q2, layout = layout.out,
nodecolor = nodecol.out, labels = labels.out)
#------------------------------------------------------------------
#------------------------------------------------------------------
par(mfrow = opar$mfrow, mar = opar$mar, xpd = opar$xpd)
invisible(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.