View source: R/model_bam_standards.R
| model_bam_standards | R Documentation |
Build a Bayesian additive model from spike-ins to correct bias in *-seq
model_bam_standards(x, conc = NULL, fm = NULL, ...)
x |
data with assorted feature information (GCfrac, CpGs, etc) |
conc |
concentration for each spike (must be provided!) |
fm |
model formula (conc ~ read_count + fraglen + GCfrac + CpGs_3) |
... |
other arguments to pass to |
the model fit for the data
library(bamlss)
data(spike_cram_counts,package="spiky")
data(spike,package="spiky")
scc <- add_frag_info(spike_cram_counts, spike=spike)
scc$conc <- scc$conc * 0.9 # adjust for dilution
scc$CpGs_3 <- scc$CpGs ^ (1/3)
fit0 <- model_bam_standards(scc,
fm=conc ~ read_count + fraglen)
fit1 <- model_bam_standards(scc,
fm=conc ~ read_count + fraglen + GCfrac + CpGs_3)
DIC(fit0, fit1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.