Nothing
# Copyright 2002-2008 by Roger Bivand and Michael Tiefelsdorf,
# with contributions by Danlin Yu
#
localmoran.sad <- function (model, select, nb, glist = NULL, style = "W",
zero.policy = NULL, alternative = "greater", spChk=NULL,
resfun=weighted.residuals,
save.Vi = FALSE, tol = .Machine$double.eps^0.5,
maxiter = 1000, tol.bounds=0.0001, save.M=FALSE, Omega=NULL) {
# need to impose check on weights TODO!!
# class to inherits Jari Oksanen 080603
if (!inherits(nb, "nb"))
stop(paste(deparse(substitute(nb)), "not an nb object"))
if (is.null(zero.policy))
zero.policy <- get("zeroPolicy", envir = .spdepOptions)
stopifnot(is.logical(zero.policy))
n <- length(nb)
dmc <- deparse(model$call)
if (!inherits(model, "lm"))
stop(paste(deparse(substitute(model)), "not an lm object"))
u <- resfun(model)
if (n != length(u))
stop("objects of different length")
if (is.null(spChk)) spChk <- get.spChkOption()
if (spChk && !chkIDs(u, nb2listw(nb, zero.policy=zero.policy)))
stop("Check of data and weights ID integrity failed")
if (!(alternative %in% c("greater", "less", "two.sided")))
stop("alternative must be one of: \"greater\", \"less\", or \"two.sided\"")
if (missing(select)) select <- 1:n
u <- as.vector(u)
select <- unique(as.integer(select))
if (length(select) < 1L) stop("select too short")
if (any(select < 1 || select > n))
stop("select out of range")
utu <- c(t(u) %*% u)
p <- model$rank
p1 <- 1:p
nacoefs <- which(is.na(coefficients(model)))
m <- n - p - 2
XtXinv <- chol2inv(model$qr$qr[p1, p1, drop = FALSE])
X <- model.matrix(terms(model), model.frame(model))
# fixed after looking at TOWN dummy in Boston data
if (length(nacoefs) > 0L) X <- X[,-nacoefs]
if (!is.null(wts <- weights(model))) {
X <- sqrt(diag(wts)) %*% X
}
cond.sad <- FALSE
if (!is.null(Omega)) {
Omega <- chol(Omega)
M <- diag(n) - X %*% tcrossprod(XtXinv, X)
M1 <- Omega %*% M
M2 <- M %*% t(Omega)
cond.sad <- TRUE
}
B <- listw2U(nb2listw(nb, glist=glist, style="B",
zero.policy=zero.policy))
D <- NULL
a <- NULL
if (style == "W") {
D <- 1/sapply(B$weights, sum)
} else if (style == "S") {
D <- 1 / sqrt(sapply(B$weights, function(x) sum(x^2)))
# a <- sum(unlist(B$weights))
# correction by Danlin Yu, 25 March 2004
a <- sum(sapply(B$weights, function(x) sqrt(sum(x^2))))
} else if (style == "C") a <- sum(unlist(B$weights))
res <- vector(mode="list", length=length(select))
for (i in 1:length(select)) {
Vi <- listw2star(B, select[i], style=style, n, D, a,
zero.policy=zero.policy)
Viu <- lag.listw(Vi, u, zero.policy=TRUE)
Ii <- c((t(u) %*% Viu) / utu)
if (cond.sad) {
obj <- sadLocalMoranAlt(Ii, Vi, M1, M2, n, tol.bounds,
tol, maxiter, ii=select[i], alternative=alternative)
sad.p <- obj$sad.p
sad.r <- obj$sad.r
sad.u <- obj$sad.u
omega <- obj$omega
p.sad <- obj$p.sad
gamma <- obj$gamma
} else {
ViX <- lag.listw(Vi, X, zero.policy=TRUE)
MViM <- t(X) %*% ViX %*% XtXinv
t1 <- -sum(diag(MViM))
sumsq.Vi <- function(x) {
if (is.null(x)) NA
else sum(x^2)
}
trVi2 <- sum(sapply(Vi$weights, sumsq.Vi), na.rm=TRUE)
t2a <- sum(diag(t(ViX) %*% ViX %*% XtXinv))
t2b <- sum(diag(MViM %*% MViM))
t2 <- trVi2 - 2*t2a + t2b
e1 <- 0.5 * (t1 + sqrt(2*t2 - t1^2))
en <- 0.5 * (t1 - sqrt(2*t2 - t1^2))
gamma <- c(c(e1), c(en))
obj <- sadLocalMoran(Ii, gamma, m, ii=select[i],
alternative=alternative)
sad.p <- obj$sad.p
sad.r <- obj$sad.r
sad.u <- obj$sad.u
omega <- obj$omega
p.sad <- obj$p.sad
gamma <- obj$gamma
}
statistic <- sad.p
attr(statistic, "names") <- "Saddlepoint approximation"
p.value <- p.sad
estimate <- c(Ii)
attr(estimate, "names") <- "Observed Moran Ii"
internal1 <- c(omega, sad.r, sad.u)
attr(internal1, "names") <- c("omega", "sad.r", "sad.u")
method <- paste("Saddlepoint approximation for local Moran I",
"(Barndorff-Nielsen formula)")
data.name <- paste("region:", select[i],
attr(nb, "region.id")[select[i]],
"\n", paste(strwrap(paste("model: ", gsub("[ ]+", " ",
paste(dmc, sep="", collapse="")))),
collapse="\n"),
"\nneighbours:", deparse(substitute(nb)),
"style:", style, "\n")
obj <- list(statistic = statistic, p.value = p.value,
estimate = estimate, method = method,
alternative = alternative, data.name = data.name,
internal1 = internal1, df = (n-p), tau = gamma,
i = paste(select[i], attr(nb, "region.id")[select[i]]),
# if (save.Vi) {Vi = Vi}
Vi = if(save.Vi) Vi else NULL)
class(obj) <- "moransad"
res[[i]] <- obj
}
class(res) <- "localmoransad"
if (save.M && cond.sad) attr(res, "M") <- list(M1=M1, M2=M2, type="cond")
if (save.M && !cond.sad) attr(res, "M") <- list(X=X, XtXinv=XtXinv,
type="null")
res
}
sadLocalMoranAlt <- function(Ii, Vi, M1, M2, n, tol.bounds=0.0001,
tol = .Machine$double.eps^0.5, maxiter = 1000, ii, alternative="greater") {
ViI <- listw2mat(Vi) - Ii * diag(n)
innerTerm <- M1 %*% ViI %*% M2
evalue <- eigen(innerTerm, only.values=TRUE)$values
tau <- c(evalue)
e1 <- tau[1]
en <- tau[length(tau)]
low <- (1 / (2*tau[length(tau)])) + tol.bounds #+ 0.01
high <- (1 / (2*tau[1])) - tol.bounds #- 0.01
f <- function(omega, tau) {sum(tau/(1 - (2*omega*tau)))}
root <- uniroot(f, lower=low, upper=high, tol=tol, maxiter=maxiter,
tau=tau)
omega <- root$root
# 0 should be expectation - maybe use try()
if (omega < 0 ) sad.r <- try(-sqrt(sum(log(1 - 2*omega*tau))))
else sad.r <- try(sqrt(sum(log(1 - 2*omega*tau))))
if (inherits(sad.r, "try.error")) {
warning (paste("In zone:", ii, "sad.r not a number"))
sad.r <- sad.u <- sad.p <- NaN
} else {
sad.u <- omega * sqrt(2*sum(tau^2 / (1 - (2*omega*tau))^2))
sad.p <- sad.r - ((1/sad.r)*log(sad.r/sad.u))
}
if (alternative == "two.sided") p.sad <- 2 * pnorm(abs(sad.p),
lower.tail=FALSE)
else if (alternative == "greater")
p.sad <- pnorm(sad.p, lower.tail=FALSE)
else p.sad <- pnorm(sad.p)
obj <- list(p.sad=p.sad, sad.p=sad.p, sad.r=sad.r, sad.u=sad.u,
omega=omega, root=root, gamma=tau)
obj
}
sadLocalMoran <- function(Ii, gamma, m, ii, alternative="greater") {
e1 <- gamma[1]
en <- gamma[2]
l <- en
h <- e1
mi <- Ii
aroot= m*mi*(l+h-2*mi)+mi*(3*l+3*h-4*mi)-2*l*h
broot= (m+2)*mi*(l-mi)*(h-mi)
c1root= l**2 * mi**2 * (m+1)**2 + h**2 * mi**2 * (m+1)**2
c2root= 2*l*h * (2*l*h - 2*l*mi - 2*h*mi - 2*m*mi**2 -
m**2 * mi**2 + mi**2)
omega= 0.25*((aroot-sqrt(c1root+c2root))/broot)
if (is.nan(omega)) {
warning (paste("In zone:", ii, "omega not a number"))
sad.r <- sad.u <- sad.p <- NaN
} else {
tau <- c(c(e1), rep(0, m), c(en))
taumi <- tau - Ii
if (omega < 0 ) sad.r <- -sqrt(sum(log(1 - 2*omega*taumi)))
else sad.r <- sqrt(sum(log(1 - 2*omega*taumi)))
sad.u <- omega * sqrt(2*sum(taumi^2 / (1 - (2*omega*taumi))^2))
sad.p <- sad.r - ((1/sad.r)*log(sad.r/sad.u))
}
if (alternative == "two.sided") p.sad <- 2 * pnorm(abs(sad.p),
lower.tail=FALSE)
else if (alternative == "greater")
p.sad <- pnorm(sad.p, lower.tail=FALSE)
else p.sad <- pnorm(sad.p)
obj <- list(p.sad=p.sad, sad.p=sad.p, sad.r=sad.r, sad.u=sad.u,
omega=omega, gamma=gamma)
obj
}
print.localmoransad <- function(x, ...) {
extract <- function(x, i) {x[[i]]}
regnames <- sapply(x, extract, 10)
est <- sapply(x, extract, 3)
sad <- sapply(x, extract, 1)
pval <- sapply(x, extract, 2)
res <- as.matrix(cbind(est, sad, pval))
rownames(res) <- regnames
colnames(res) <- c("Local Morans I", "Saddlepoint", "Pr. (Sad)")
print(res, ...)
invisible(res)
}
as.data.frame.localmoransad <- function(x, row.names=NULL, optional=FALSE, ...) {
n <- length(x)
if (n < 1) stop("x too short")
res <- matrix(0, nrow=n, ncol=14)
regnames <- NULL
if (!is.null(row.names))
if (length(row.names) == n) regnames <- row.names
if (is.null(regnames))for (i in 1:n) regnames <- c(regnames, x[[i]]$i)
for (i in 1:n) {
tau <- x[[i]]$tau
df <- x[[i]]$df
tau <- c(tau[1], rep(0, df-2), tau[2])
max.I <- tau[1]
min.I <- tau[length(tau)]
E.I <- sum(tau)/df
tau <- tau - E.I
V.I <- (2*sum(tau^2)) / (df*(df+2))
Z.I <- (x[[i]]$estimate - E.I) / sqrt(V.I)
if (x[[i]]$alternative == "two.sided")
P.I <- 2 * (1 - pnorm(Z.I))
else if (x[[i]]$alternative == "greater")
P.I <- pnorm(Z.I, lower.tail=FALSE)
else P.I <- pnorm(Z.I)
Sk.I <- ((8*sum(tau^3))/(df*(df+2)*(df+4))) / (V.I^(3/2))
Kur.I <- ((48*sum(tau^4) + 12*(sum(tau^2))^2) /
(df*(df+2)*(df+4)*(df+6))) / (V.I^2)
res[i,] <- c(x[[i]]$estimate, Z.I, P.I, x[[i]]$statistic,
x[[i]]$p.value, E.I, V.I, Sk.I, Kur.I, min.I, max.I,
x[[i]]$internal1)
}
colnames(res) <- c("Local Morans I", "Stand. dev. (N)", "Pr. (N)",
"Saddlepoint", "Pr. (Sad)", "Expectation", "Variance",
"Skewness", "Kurtosis", "Minimum", "Maximum",
"omega", "sad.r", "sad.u")
rownames(res) <- regnames
res <- as.data.frame(res)
res
}
summary.localmoransad <- function(object, ...) {
res <- as.data.frame(object)
class(res) <- c("summary.localmoransad", class(res))
res
}
print.summary.localmoransad <- function(x, ...) {
print(as.data.frame(x), ...)
invisible(x)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.