Nothing
#' Get coverage of interactions
#'
#' @param MomaObject A numeric vector with cluster membership, names are samples
#' @param viper.samples Calculate the genomic coverage only for these sample
#' @param cMR.ranking A vector entrez IDs, in order
#' @param topN Compute coverage for only the top -N- Master Regulators
#' @param mutation.filter Retain only mutation events in this (positive) list
#' @return A list of lists, indexed by sample name, with coverage statistics
#' for each sample
#' @keywords internal
getCoverage <- function(MomaObject, cMR.ranking, viper.samples, topN = 100,
mutation.filter = NULL, verbose = FALSE) {
if (!is(MomaObject, "Moma")) {
stop("Must have instantiated Moma class object passed!")
}
# select considered cMRs
selected.tfs <- cMR.ranking[seq_len(topN)]
if (length(selected.tfs) == 0) {
stop("No TFs selected!")
}
# confirm they are in Entrez ID format
is.entrezIDs <- function(vec) {
all(vapply(seq_along(vec), function(i) as.numeric(vec)[i]==vec[i], FUN.VALUE = logical(1)))
}
if (isFALSE(is.entrezIDs(selected.tfs))) {
stop("TFs not in entrez ID format!")
}
# For each event type, gets names of cMRs that have those events
interaction.map <- validDiggitInteractions(MomaObject$interactions,
MomaObject$gene.loc.mapping,
selected.tfs)
# another assert statment: make sure we have non-zero interactions for each
for (key in names(interaction.map)) {
if (sum(vapply(interaction.map[[key]], length, FUN.VALUE = numeric(1))) < 1) {
warning("Didn't find any positive DIGGIT associations for data type ",
key, " in subtype")
}
}
oc <- sampleOverlap(MomaObject, viper.samples, selected.tfs, interaction.map,
mutation.filter = mutation.filter, verbose = verbose)
# count mutations/amps/dels covered at this point. Aggregate stats
oc
}
#' Return a set of events 'covered' by specified cMR-event interactions
#' @param interactions List indexed by amp/mut/del/fus from cMRs to interacting
#' events
#' @param gene.loc.mapping Data.frame mapping entrezIDs to cytoband locations
#' @param selected.tfs For each event type list, search within only these cMRS
#' @return a list of events 'covered' by the supplied interactions of
#' type mut/amp/del/fus
#' @keywords internal
validDiggitInteractions <- function(interactions, gene.loc.mapping,
selected.tfs) {
if (length(selected.tfs) == 0) {
stop("No TFs input to diggit function")
}
selected.tfs <- as.character(selected.tfs)
mut.tfs <- selected.tfs[which(selected.tfs %in% names(interactions[["mut"]]))]
amp.tfs <- selected.tfs[which(selected.tfs %in% names(interactions[["amp"]]))]
del.tfs <- selected.tfs[which(selected.tfs %in% names(interactions[["del"]]))]
fus.tfs <- selected.tfs[which(selected.tfs %in% names(interactions[["fus"]]))]
if (length(mut.tfs) == 0 || length(amp.tfs) == 0 || length(del.tfs) == 0) {
stop("No valid TFs in the interactions supplied!")
} else if (length(fus.tfs) == 0) {
message("No valid fusion interactions...")
}
mut.I <- subsetListInteractions(interactions[["mut"]], mut.tfs)
del.I <- subsetListInteractions(interactions[["del"]], del.tfs)
amp.I <- subsetListInteractions(interactions[["amp"]], amp.tfs)
# only subset if fusions exist fusions IDs are unique , nothing else necessary
if (length(fus.tfs) >= 1) {
fus.I <- subsetListInteractions(interactions[["fus"]], fus.tfs)
covered.fusions <- fus.I
}
# Add cnv events to mutation coverage, as either copy number variation is
# valid evidence for explaining a patient's mutation
covered.mutations <- mergeLists(mut.I, del.I)
covered.mutations <- mergeLists(covered.mutations, amp.I)
# Add mut events to cnv coverage, as it is a valid type of evidence for
# explaining a patient's CNV change
covered.amps <- mergeLists(amp.I, mut.I)
covered.dels <- mergeLists(del.I, mut.I)
# create a new mapping from TF in Entrez -> event location
covered.amps.LOC <- lapply(names(covered.amps), function(x, I) {
geneNames <- I[[as.character(x)]]
band.names <- unique(as.character(gene.loc.mapping[which(gene.loc.mapping$Entrez.IDs %in% geneNames), "Cytoband"]))
if (length(band.names) == 0 & length(geneNames) == 0) {
#print(paste("No amplification events associated with", as.character(x)))
band.names <- NA
} else if (length(band.names) == 0) {
warning(paste("Could not map entrez IDs to Cytoband for IDS,
skipping...", geneNames))
band.names <- NA
}
band.names
}, I = covered.amps)
names(covered.amps.LOC) <- names(covered.amps)
covered.amps.LOC <- covered.amps.LOC[!is.na(covered.amps.LOC)]
if (sum(vapply(covered.amps.LOC, length, FUN.VALUE = numeric(1))) == 0) {
stop("Something went wrong when mapping amplification Entrez.IDs
to Cytoband IDs. Quitting...")
}
# create a new mapping from TF in Entrez -> event location
covered.dels.LOC <- lapply(names(covered.dels), function(x, I) {
geneNames <- I[[as.character(x)]]
band.names <- unique(as.character(gene.loc.mapping[which(gene.loc.mapping$Entrez.IDs %in% geneNames), "Cytoband"]))
if (length(band.names) == 0 & length(geneNames) == 0) {
#print(paste("No deletion events associated with", as.character(x)))
band.names <- NA
} else if (length(band.names) == 0) {
warning("Could not map entrez IDs to Cytoband for IDS,
skipping... ", geneNames)
band.names <- NA
}
band.names
}, I = covered.dels)
names(covered.dels.LOC) <- names(covered.dels)
covered.dels.LOC <- covered.dels.LOC[!is.na(covered.dels.LOC)]
if (sum(vapply(covered.dels.LOC, length, FUN.VALUE = numeric(1))) == 0) {
stop("Something went wrong when mapping deletion Entrez.IDs
to Cytoband IDs. Quitting...")
}
# don't incorporate fusions into final list object unless they exist
if (length(fus.tfs) >= 1) {
return(list(mut = covered.mutations, amp = covered.amps.LOC,
del = covered.dels.LOC, fus = covered.fusions))
} else {
return(list(mut = covered.mutations, amp = covered.amps.LOC,
del = covered.dels.LOC))
}
}
#' The core function to compute which sample-specific alterations overlap with
#' genomic events that are explained
#' via DIGGIT.
#' @importFrom utils head
#' @param MomaObject Object reference of momaRunner class
#' @param viper.samples Sample vector to restrict sample-specific analysis to
#' @param selected.tfs Transcription factors being analyzed
#' @param interaction.map List object of events 'covered' by the supplied
#' interactions of type mut/amp/del/fus
#' @param cnv.threshold Numeric absolute value to threshold SNP6 and/or GISTIC
#' or other CNV scores. Above that absolute value is considered a positive event.
#' @param mutation.filter A vector of whitelisted mutation events, in entrez gene IDs
#' @param idx.range Number of tfs to check for genomic saturation calculation,
#' default is 1253
#' @param verbose Output status during the run (default=FALSE)
#' @return A list of lists, indexed by sample name, with coverage
#' statistics/data for each sample
#' @keywords internal
sampleOverlap <- function(MomaObject, viper.samples, selected.tfs, interaction.map,
cnv.threshold = 0.5, mutation.filter = NULL,
idx.range = NULL, verbose = FALSE) {
if (is.null(MomaObject$hypotheses)) {
stop("No hypothesis set for momaRunner class object!!")
}
map <- MomaObject$gene.loc.mapping
mut.HYP.filter <- MomaObject$hypotheses[["mut"]]
amp.HYP.filter <- na.omit(unique(vapply(as.character(MomaObject$hypotheses[["amp"]]), function(x) {
res <- NA
x <- as.character(x)
if (x %in% map$Entrez.IDs) {
# get cytoband location for this gene if it's in the map
res <- unique(map[which(map$Entrez.IDs == x), "Cytoband"])
}
as.character(res)
}, FUN.VALUE = character(1))))
del.HYP.filter <- na.omit(unique(vapply(as.character(MomaObject$hypotheses[["del"]]), function(x) {
res <- NA
x <- as.character(x)
if (x %in% map$Entrez.IDs) {
# get cytoband location for this gene if it's in the map
res <- unique(map[which(map$Entrez.IDs == x), "Cytoband"])
}
as.character(res)
}, FUN.VALUE = character(1))))
fus.HYP.filter <- MomaObject$hypotheses[["fus"]]
if (length(mut.HYP.filter) == 0) {
stop("No hypotheses for mut!")
} else if (length(amp.HYP.filter) == 0) {
stop("No hypotheses for amp!")
} else if (length(del.HYP.filter) == 0) {
stop("No hypotheses for del!")
} else if (length(fus.HYP.filter) == 0) {
#message("Zero fusion hypotheses")
}
# consider only samples triple intersection of samples with CNV, mutation and RNA (i.e. VIPER inferences) data
all.samples.genomics <- intersect(colnames(MomaObject$mut), colnames(MomaObject$cnv))
all.sample.names <- intersect(all.samples.genomics, viper.samples)
coverage <- lapply(all.sample.names, function(sample) {
if(verbose){
message("Computing coverage for sample ", sample)
}
# find active and inactive proteins in this sample
viper.pvals <- (1 - pnorm(abs(MomaObject$viper[, sample])))
active.proteins <- rownames(MomaObject$viper)[intersect(which(viper.pvals < 0.05), which(MomaObject$viper[, sample] > 0))]
if (length(active.proteins) == 0) {
warning("No active proteins found for sample: ", sample)
}
# Collect mutation events in this sample's row:
mut.events <- as.character(names(which(MomaObject$mut[, sample] > 0)))
mut.events <- intersect(mut.events, MomaObject$hypotheses[["mut"]])
# entrez ids to cytoband get genes
del.events <- as.character(names(which(MomaObject$cnv[, sample] < -cnv.threshold)))
del.events.entrez <- intersect(del.events, MomaObject$hypotheses[["del"]])
# map to genomic locations
del.events.cytoband <- unique(map[which(map$Entrez.IDs %in% del.events.entrez), "Cytoband"])
# get genes
amp.events <- as.character(names(which(MomaObject$cnv[, sample] > cnv.threshold)))
amp.events.entrez <- intersect(amp.events, MomaObject$hypotheses[["amp"]])
# map to genomic locations
amp.events.cytoband <- unique(map[which(map$Entrez.IDs %in% amp.events.entrez), "Cytoband"])
# not all samples will have fusions: include if possible
fus.events <- NULL
if (!is.null(fus.HYP.filter)) {
if (sample %in% colnames(MomaObject$fusions)) {
fus.events <- names(which(MomaObject$fusions[, sample] > 0))
if(length(fus.events) == 0) {
fus.events <- NULL
}
}
}
fus.events <- fus.events[which(fus.events %in% MomaObject$hypotheses[["fus"]])]
validated.del.locations <- del.events.cytoband
validated.amp.locations <- amp.events.cytoband
validated.fusion.events <- fus.events
validated.mut.events <- mut.events
if (!is.null(mutation.filter)) {
message("Using mutation filter:")
prev.count <- length(validated.mut.events)
validated.mut.events <- intersect(mutation.filter, validated.mut.events)
removed = prev.count - length(validated.mut.events)
message("Filtered out: ", removed, " mutations using filter...")
}
if (verbose) {
message("MUTS:", length(validated.mut.events))
message("DELS:", length(validated.del.locations))
message("AMPS:", length(validated.amp.locations))
message("FUS:", length(validated.fusion.events))
message(" ")
}
# for each K in 1:N, compute the coverage of the top K events and return the stats
sample.cover <- lapply(seq_along(selected.tfs), function(x) c())
# do a semi-complete range for speed and if supplied already with a range, then use that
if (is.null(idx.range)) {
if (length(selected.tfs) > 100) {
idx.range <- seq_len(50)
idx.range <- c(idx.range, 26:50 * 2)
idx.range <- c(idx.range, 11:30 * 10)
idx.range <- c(idx.range, 13:25 * 25)
idx.range <- c(idx.range, 7:12 * 100)
idx.range <- c(idx.range, 1253)
} else {
idx.range = seq_along(selected.tfs)
}
}
# store the set of active MRs, if it's identical to the last iteration, update and skip re-computation
active.mrs.length.LAST <- 0
last.idx <- 1
for (i in idx.range) {
# use these for coverage
top.N.tfs <- selected.tfs[seq_len(i)]
active.mrs <- intersect(active.proteins, top.N.tfs)
# if no extra active mrs this round, copy previous stats and continue
if ((length(active.mrs) == active.mrs.length.LAST) & (i > 1)) {
sample.cover[[i]] <- sample.cover[[last.idx]]
next
} else {
active.mrs.length.LAST <- length(active.mrs)
last.idx <- i
}
# print ('Active MRs:') print (active.mrs)
covered.mut <- unique(unlist(lapply(active.mrs, function(mr) {
covered <- intersect(interaction.map$mut[[mr]], validated.mut.events)
covered
})))
covered.del <- unique(unlist(lapply(active.mrs, function(mr) {
covered <- intersect(interaction.map$del[[mr]], validated.del.locations)
covered
})))
covered.amp <- unique(unlist(lapply(active.mrs, function(mr) {
covered <- intersect(interaction.map$amp[[mr]], validated.amp.locations)
covered
})))
covered.fus <- unique(unlist(lapply(active.mrs, function(mr) {
covered <- intersect(interaction.map$fus[[mr]], validated.fusion.events)
covered
})))
amp.frac <- ifelse(length(validated.amp.locations) == 0, NA, length(covered.amp)/length(validated.amp.locations))
del.frac <- ifelse(length(validated.del.locations) == 0, NA, length(covered.del)/length(validated.del.locations))
mut.frac <- ifelse(length(validated.mut.events) == 0, NA, length(covered.mut)/length(validated.mut.events))
fus.frac <- ifelse(length(validated.fusion.events) == 0, NA, length(covered.fus)/length(validated.fusion.events))
# compute total frac
total.frac <- NA
total.num.events <- length(c(validated.mut.events, validated.amp.locations, validated.del.locations, validated.fusion.events))
total.frac <- ifelse(length(total.num.events) == 0, NA, (length(covered.amp) + length(covered.del) + length(covered.mut) + length(covered.fus))/total.num.events)
sample.cover[[i]] <- list(amp = covered.amp, del = covered.del, mut = covered.mut, fus = covered.fus, amp.frac = amp.frac, del.frac = del.frac,
mut.frac = mut.frac, fus.frac = fus.frac, total.frac = total.frac)
}
sample.cover
})
names(coverage) <- all.sample.names
coverage
}
#' @title Helper function: subset a list to the set of keys supplied return the
#' names of interactions with positive values, in a list structure
#' @param int.l List of interactions, at each index this is a numeric named vector
#' @param keys Keys used to reduce interactions
#' @return Returns a filtered list of interactions in the same format as the input
#' @keywords internal
subsetListInteractions <- function(int.l, keys) {
filtered.I <- lapply(keys, function(key, interactions) {
I <- interactions[[as.character(key)]]
# named vector
event.names <- names(I[which(I > 0)])
event.names
}, interactions = int.l)
names(filtered.I) <- keys
filtered.I
}
#' Helper function
#' @param l1 list 1
#' @param l2 list 2
#' @return single merged list
#' @keywords internal
mergeLists <- function(l1, l2) {
merged <- list()
inter <- intersect(names(l1), names(l2))
# combine joint entries
for (key in inter) {
merged[[key]] <- union(l1[[key]], l2[[key]])
}
# add entries unique to l1
for (key in setdiff(names(l1), names(l2))) {
merged[[key]] <- l1[[key]]
}
# add entries unique to l2
for (key in setdiff(names(l2), names(l1))) {
merged[[key]] <- l2[[key]]
}
return(merged)
}
#' @title mergeGenomicSaturation Create data frame from coverage data, including
#' number of total events 'covered' and unique events
#' @param coverage.range List indexed by sample, then sub-indexed by # of master
#' regulators, then by event type (mut/amp/del/fus). Holds all events by sample
#' @param topN Maximum number of master regulators to compute coverage
#' @return A data frame with summary statistics for genomic saturation at each k
#' @keywords internal
mergeGenomicSaturation <- function(coverage.range, topN) {
data <- c()
for (i in seq_len(topN)) {
# count for each sample $mut/amp/del all point to either a NA or a vector of names of the event. If NA the length will be zero so simply count the
# number of each type of event
count <- unlist(lapply(coverage.range, function(x) {
num.events <- length(x[[i]]$mut) + length(x[[i]]$amp) + length(x[[i]]$del)
}))
count <- na.omit(count)
# apply over each sample, get the coverage for each
fraction <- unlist(lapply(coverage.range, function(x) {
# critically: must omit the NAs so they don't interfere with count
event.fractions <- x[[i]]$total.frac
event.fractions
}))
fraction <- na.omit(fraction)
all.events <- unlist(lapply(coverage.range, function(x) {
c(x[[i]]$mut, x[[i]]$amp, x[[i]]$del)
}))
all.events <- na.omit(all.events)
data <- rbind(data, c(i, mean(count), mean(fraction), length(unique(all.events))))
}
df <- data.frame(mean = data[, 2], k = data[, 1], fraction = data[, 3], unique.events = data[, 4])
df
}
#' @title Fit based on fractional overall coverage of genomic events
#' @param sweep Numeric vector of genomic coverage values, named by -k- threshold
#' @param frac Fraction of coverage to use as a threshold (default .85 = 85 percent)
#' @return The -k- integer where coverage is acheived
#' @keywords internal
fitCurvePercent <- function(sweep, frac = 0.85) {
fractional <- as.numeric(as.character(sweep))/max(sweep)
best.k <- names(sweep[which(fractional >= frac)])[1]
return(as.numeric(best.k))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.